
RPPOPT flocUMENTATION PAGE FOPM Ak.074-18 C

buroen estyimate or any oither awea ot in cowiotn of W lrmalm rflJ- 5 1-4S~~ for mu=c tis bUrden. to Waa~ingicirA D - h A 2 0 5 $ttsoI Davis ,gftway S uit 1204 Ahlngon VA 2M-4 02 . "n to 1110 Ofica 1 114mnaaou, a me aiamv A ft ira ffce.1 111 ii111111li!111li I~li)RT DATE 3, REPORT TYPE AND DATES COVERED
1 II111111 INI t111111111 111 11fff111 l1II Final: 30 Jul 1991 to 01 Jun 1993

4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report:U.S. NAVY, AdaIM, Version 4.0
(/OPTIMIZE), VAX 11/785, running VAX/VMS Version 5.3 (Host) to AN/AYK-14
(Bare Board)(Target), 910626S1 .1 1179

6 AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA
7 PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory /NIST9OUSN51O_12_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONiTORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E1 14
Washington, D.C. 20301 -3081

11 SUPPLEMENTARY NOTES

12a. DISTRI BUTION/AVAi LABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

U.S. NAVY, Ada/M, Version 4.0 (/OPTIMIZE), Gaithersburg, MD, VAX 11/785, running VAX/VMS Version 5.3 (Host) to
AN/AYK-1 4 (Bare Board)(Target), ACVC 1. 11

SEP 19 19911 2 RU U 91-11067

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Ccmpiler Val. Summary Report, Ada Compiler Val.-
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/M IL-STD-1 815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. UIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

'INf',l AS-GiIFD UNCLASSIFFD IUNCLASSIFIED
NSN 7540-01-280-550 -Standard Form 29a, (Rev 2-8f#)

Prescribed by ANSI Sid. 239-128

AVF Control Number: NIST9OUSN5lO_12_1.11
DA_-2 COMPLETED

BEFORE ON-SITE: 1991-04-05
AFTER ON-SITE: 1991-06-26
REVISIONS: 1991-07-30

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910626S1.11179
U.S. NAVY

Ada/M, Version 4.0 (/OPTIMIZE)
VAX 11/785 => AN/AYK-14 (BP:.re Board)

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Accesion For I

NTIS CRA&I 1
DTIC TAB r_1
U 1a:111oiced f-

By............

Ava;0Lt[11ty Codes

DistAva o

DA -1

AVF Control Number: NIST90USN510_12_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on 1991-06-26.

Compiler Name and Version: Ada/M, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 11/785, running VAX/VMS Version
5.3

Target Computer System: AN/AYK-14 (Bare Board)

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
910626S1.11179 is awarded to U.S. NAVY. This certificate expires
on 01 March 1993.

This report has been reviewed and is approved.

A Vd Va idati i a ility Ada Vali a cility

Dr. David K. f rs n Mr. L. A r'ol Johnson
Chief, Information Systems Manager, E ware Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards end Technolo-y

Building 225, Room A266
Gaithersburg, MD 20899

SAda V if in rganization Ada Joint Program Office
Diretor, Coputer & Software Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

Certificate Awardee: U.S. NAVY

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.1i

Ada Implementation:

Compiler Name and Version: Ada/M, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 11/785, running VAX/VMS Version
5.3

Target Computer System: AN/AYK-14 (Bare Board)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Customer Signature Date
Company U.S. Navy
Title

Certificate Awardee Sianature Date
Company U.S. Navy
Title

TABLE OF CONTENTS

CHAPTER 1...................................1-1
INTRODUCTION............................-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1

1.2 REFERENCES...................1-1
1.3 ACVC TEST CLASSES............................1-2
1.4 DEFINITION OF TERMS........................1-3

CHAPTER 2..2-i
IMPLEMENTATION DEPENDENCIES.........................2-1

2.1 WITHDRAWN TESTS............................2-1
2.2 INAPPLICABLE TESTS.................2-i
2.3 TEST MODIFICATIONS.................2-3

CHAPTER 3..3-1
PROCESSING INFORMATION.......................3-1

3.1 TESTING ENVIRONMENT........................3-i
3.2 SUMMARY OF TEST RESULTS................3-1
3.3 TEST EXECUTION.................3-2

APPENDIX A....................................A-1
MACRO PARAMETERS.......................A-1

APPENDIX B....................................B-i
COMPILATION SYSTEM OPTIONS....................B-i
LINKER OPTIONS........................B-2

APPENDIX C..C-i
APPENDIX F OF THE Ada STANDARD..............C-i

CHAPTER 1

INTRODUCTION

The Ada imrlementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). Tlis
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

LAda83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested vy means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRTI3, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by

1-2

the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and (UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)
Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate =.itity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
=ind data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro9O].

Validation The process of checs -. the conformity of an Ada
compiler tj the Ad- .-gramming language and of
issuing a certificate for tnis implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-05-03.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D B83026B C83026A C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1B02B BD1B06A ADIB08A BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contai.s test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 327 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113C..Y (23 tests) C35705C..Y (23 tests)
C35706C..Y (23 tests) C35707C..Y (23 tests)
C35708C..Y (23 tests) C35802C..Z (24 tests)

2-1

C45241C..Y (23 tests) C45321C..Y (23 tests)
C45421C..Y (23 tests) C45521C..Z (24 tests)
C45524C..Z (24 tests) C45621C..Z (24 tests)
C45641C..Y (23 tests) C46012C..Z (24 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such *ype.

The following 21 tests check for the predefined type SHORTINTEGER;
for this implementation, there is no such type:

C35404B B361050 C'5231B C45104B C45411B
C45412B C45502B C45_ 33B C45504B C45504E
C45611B CA5613B C45614B C45631B C45632?
B52004E C55B07B B55B09D B86001V C860060
CD7101E

C35404D, C45231D, B860ulX, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEG-R; for this implementation, there is
no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LON .. FLOAT, or SHORTFLOAT; for this
implementation, there is no sucri type.

C45531M. . P and C45522M. . P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, there is no such type.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

D64005F uses 10 levels of recursive procedure calls nesting; this
el of nesting for procedure calls exceeds the capacity of the

compiler.

D64005G uses 17 levels of recursiv- procedure calls nesting; this
test exceeds the linkable size of 128KBytes.

B86001Y uses the name of a predefined fixed-point type other than
DURATION; for this implementation, there is no such type.

CD1009C checks whether a iength clause can specify a non-default
size for a floating-point type; this implementation does r-t
support such sizes.

2-2

CD2A84A, CD2A84E, CD2A841..J (2 tests) , and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

AE23-01C uses instantiations of4 packagre SEQUENTIAL_10 with
unconstrained array types and record types with disc-rinminants
without defaults; these instantiations are rejected by this
compiler.

AE2101H uses ainstantidtions of package DIRECT_-10 with unconstrained
array types and record types with discrimninants without defaults;
these instantiations are rejected by this compiler.

The following 264 tests check operaticns on sequential, text, and
direct acces7 files; this implementation does not support external
files*

CE21O2A. .C (3) CE2lO2G. .H (2) CE2102K CE2102N.. y (12)
CE2O3u. . D (2) 0_E2104A. .D (4) CE2lO5A. .B (2) CE2lO6A. .B (2)
CE2lO7A. -H (8) CE?)107L CE2lO8A. .H (8) CE2lO9A. .C (3)
CE211OA. .D (4) CE2lllA. .1 (9) CE2ll5A. .B (2) CE2l2OA. . (2)
CE22OlA. .C (3) EE22OlD. .E (2) CE22OlF. .N (9) CE2203A
CE2204A. .D (4) CE2205A CE2206A CE2208B
CE24OlA. .C (3) EE2401D CE24OlE. .F (2) EE2401G
CE24OlH. .L (5) CE2403A CE2404A. .B (2) CE2405B
CE2406A CE2407A. .B (2) CE2408A. .B (2) CE2409A. .B (2)
CE241OA. .: (2) CE24llA CE31O2A. .C (3) CE3lO2F. .H (3)
CE31O2J. .K (2) CE3103A CE3lO4A. .C (3) CE3lO6A. .B (2)
CE3107B CE31O8A. .B (2) CE3109A CE3110A
CE3111A. .B (2) CE3lllD. .E (2) C--3ll2A. .D (4) CE3ll4A. .B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3%05A CE3401A
CE3402A EE3402B CE3402C. .D (2) CE3403A. .C (3)
CE3403E. -7 (2) CE3404B. .D () CE3405A EE3405B
CE3405C. .D (2) CF3406A. .D (4) CE3407A. .C (3) CE340 'A. .C (3)
CE3409A CE3409C. .E (3) EE3409F CE3410A
CE341OC. .E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A. .C (3) CE3414A
CE3602A. k4) CE3-)3A CE3604A. .B (2) CE3605A. .E (5)
CEJ3fl6A.-d (2) CE3704A. .F (6) CE3704M. .0 (3) CE2705A. .E (5)
CE3706D CE37'n6F. .G (2) CE3804A. .P (16) CE3805A. .B (2)
CE3806A. .B (2) CE3806J. .E (2) CE3806G. .H (2) CE3904A. .B (2)
CE39O5A. .C (3) CE3905L CE3906A. .C (3) CE3906E. .F (2)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 44 tests.

2-3

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22004A B23004A B24005A B24005B B28003A
B33201C B33202C B33203C B33301B B37106A B37301I
B38003A B38003B B38009A B38009B B44001A B44004A
B54AOlL B55AOlA B61005A B85008G B85008H B95063A
B97103E BB1006B BCII02A BCl09A BC11O9B BC1109C
BC1109D BC1201F BC1201G BC1201H BC1201I BC120IJ
BC1201L BC3013A BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAM-ERROR.

C34005P and C34005S were graded passed by Test Modification as
directed by the AVO. These tests contain expressions of the form
"I - X'FIRST - Y'FIRST", where X and Y are of an array type with a
lower bound of INTEGER'FIRST; this implementation recognizes that
"X'FIRST + Y'FIRST" is a loop invariant and so evaluates this part
of the expression separately, which raises NUMERIC ERROR. These
tests were modified by inserting parens to force a different order
of evaluation (i.p., to force the subtraction to be evaluated
first) at lines 187 and 262/263, respectively; those modified lines
are:

[C34005P, line 187]

IF NOT EQUAL (X (I), Y ((I - X'FIRST) + Y'FIRST)) THEN

[C34005S, lines 261..4 (only 262 & 263 were modified)]

IF NOT EQUAL (X (I, J),
Y ((I - X'FIRST) + Y'FIRST,

(J - X'FIRST(2)) +
Y'FIRST(2))) THEN

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this
Ada implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity

Code 81, Room 301D
200 Catalina Blvd.

San Diego, California 92147
619-553-9447

For a point of contact for sales information about this Ada

implementation system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all . :ocessed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3429

b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 647
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

3-1

f) Total Number of Inapplicable Tests 647 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b~-f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVr determined that 647
tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the validation team for
processing. The contents of the magnetic tape were loaded
directly onto the host computer.

After the test files were loaded onto the host computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system
and executed on the target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B
for a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

FOR /OPTIMIZE the options were:

/SUMMARY /OPTIMIZE /SOURCE /EMR /OUT=<filename>

The options invoked by default for validation testing during
this test were:

FOR /OPTIMIZE the options were:

NO MACHINE CODE NOATTRIBUTE NO CROSS REFERENCE
NO-DIAGNOSTICS NONOTES PRIVATE LIST CONTAINERGENERATION

3-2

CODEON WARNING NOMEASURE DEBUG CHECKS NOEXECUTIVE
NORTEONLY TRACE-BACK

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG891. The parameter values are
presented in two tables. The _.-'st table lists the values
that are defined in terms of the maximum input-line length,
which is I the value for $MAXINLEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value
--- --

$MAXINLEN 120

$BIGIDl (1..V-l => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (1..V-I-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & f"'

SBLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11 :"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-I

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
--- --

$ACCSIZE 16

$ALIGNMENT 4

$COUNTLAST 32767

$DEFAULTMEMSIZE 65_536

$DEFAULTSTORUNIT 16

$DEFAULTSYSNAME ANAYK14

$DELTADOC 2#0.0000_0000_0000_0000_0000_0
000_0000_001#

$ENTRYADDRESS 16#0800#

$ENTRYADDRESS1 16#1800#

$ENTRYADDRESS2 16#2800#

$FIELDLAST 32767

$FILETERMINATOR ' I

$FIXED_NAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING "i"

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATERTHANDURATION 131071.5

$GREATERTHAN DURATIONBASELAST 131073.0

$GREATERTHANFLOATBASELAST 7.5E+75

$GREATERTHANFLOATSAFELARGE 7.5E+75

$GREATERTHANSHORTFLOATSAFELARGE 0.OEO

$HIGHPRIORITY 15

A-2

$ILLEGALEXTERNALFILENAME1 BAD-CHARS^'.%!X@*()*&-%$#@!@

$ILLEGALEXTERNALFILENAME2 A N 0 T H E R _ B A D -

CHARS-'#. %!X@* () *&'%$#@! @

$INAPPROPRIATELINELENGTH -1

$INAPPRQPRIATEPAGELENGTH -1

$INCLUDEPRAGMA. PRAGMA INCLUDE ("-A28006Dl.TST")

$INCLUDE PRAGMA2 PRAGMA INCLUDE ("IB28006F1.TST")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGERLASTPLUS_1 32_768

$ INTERFACELANGUAGE MACRONORMAL

$LESSTHANDURATION -131071.5

$LESSTHANDURATIONBASEFIRST -131073.0

$LINETERMINATOR ASCII.LF

$LOWPRIORITY 0

$MACHINECODESTATEMENT instr'(lr, r0,r0)

$MACHINE CODE TYPE iristr

$MANTISSADOC 31

$MAXDIGITS 6

$MAXINT 2147483647

$MAXINTPLUS_1 2147483648

$MININT -2147483648

$NAME NOSUCHINTEGERTYPE

$NAMELIST ANUYK44,ANAYK14

$NAMESPECIFICATIONi X2120A

$NAMESPECIFICATION2 X2120B

A- 3

$NAMESPECIFICATION3 X3119A

$NEGBASEDINT 16#FFFFFFFEr;

$NEWMEMSIZE 65_536

$NEWSTORUNIT 16

$NEWSYSNAME ANUYK44

$PAGETERMINATOR ASCII.FF

$RECORDDEFINITION RECORD value :signed byte; END
RECORD;

$RECORDNAME signed byte_value

$TASKSIZE 32

$TASKSTORAGESIZE 2048

$TICK 0.00003125

$VARIABLEADDRESS 16#0020#

$VARIABLEADDRESS1 16#0021#

SVARIABLEADDRESS2 16#0023#

$YOURPRAGMA EXECUTIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

B-1

Version 3.5 Ada/M PSE Handbook
29 March 1991

--+
Option Function

EXECUTIVE Enables pragma EXECUTIVE and allows
visibility to units which have been
compiled with the RTE ONLY option.
Default: NOEXECUTIVE

MEASURE Generates code to monitor execution
frequency at the subprogram level fcr
the current unit. Default: NOMEASURE

NOCHECKS NO CHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.
Default: CHECKS

NO CODE ON WARNING
NO CODE ON WARNING means no code is
generated when there is a diagnostic
of severity WARNING or higher.
CODE ON WARNING generates code
only if there are no diagnostics
of a severity higher than WARNING.
Default: CODEONWARNING

NO CONTAINER GENERATION
NO CONTAINER GENERATION means that no
container is-produced even if there
are no diagnostics.
CONTAINER GENERATION produces a
container if diagnostic serverity
permits.
Default: CONTAINERGENERATION

Table F-4a - Special Processing Options

F-56 F.14 Compiler Options

Ada/M PSE Handbook Version 3.5
29 March 1991

--

Option Function
--

NODEBUG If NO DEBUG is specified, only that
information needed to link, export
and execute the current unit is
included in the compiler output.

With the DEBUG option in effect,
internal representations and
additional symbolic information are
stored in the container.
Default: DEBUG

NO TRACE BACK Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACE BACK

OPTIMIZE Enables global optimizations in
accordance with the optimization
pragmas specified in the source
program. If the pragma OPTIMIZE is
not included, the optimizations
emphasize TIME over SPACE.
When NO OPTIMIZE is in effect, no
global iptimizations are performed,
regardless of the pragmas specified.
Default: NOOPTIMIZE

RTEONLY Restricts visibility of this unit
only to those units compiled with
the EXECUTIVE option.
Default: NORTEONLY

--

Table F-5b - Special Processing Options (Continued)

F.14 Compiler Options F-57

Version 3.5 Ada/M PSE Handbook
29 March 1991

-- ----------------
I Option Function I

ATTRIBUTE Produces a Symbol Attribute Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSSREFERENCE are specified.)
Default: NOATTRIBUTE.

CROSS-REFERENCE Produces a Cross-Reference Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS REFERENCE are specified.)
Default: NOCROSSREFERENCE.

DIAGNOSTICS Produces a Diagnostic Summary Listing.
Default: NO DIAGNOSTICS.

MACHINE CODE Produces a Machine Code Listing if
code is generated. Code is generated
when CONTAINER GENERATION option is
in effect and T1) there are no
diagnostics of severity ERROR, SYSTEM,
or FATAL, and/or (2) NO CODE ON WARNING
option is in effect and there are no
diagnostics of severity higher than
NOTE. A diagnostic of severity NOTE
is reported when a Machine Code
Listing is requested and no code is
generated. OCTAL is an additional
option that may be used with
MACHINE CODE to output ocatal values
on the listing instead of hex values.
Default: NO MACHINE CODE.

NOTES Includes diagnostics of NOTE severity
level in the Source Listing.
Default: NONOTES.

SOURCE Produces listing of Ada source
statements. Default: NOSOURCE.

SUMMARY Produces a Summary Listing; always
produced when there are errors in the
compilation. Default: NO-SUMMARY.

Table F-6 - Ada/M Listing Control Options

F-58 F.14 Compiler- Options

Ada/M PSE Handbook Versi~on 3.5
29 March 1.991

+--

Ioption Function

IMSG Sends error messages and the
Diagnostic Summary Liswing to the
file specified. The default is to
send error messages and the Diagnostic
Summary Listing to Message Output
(usually tne terminal).

OUT Sends all selected listings to a
single file specified. The default
is to send listings to Standard
Output (ususally the terminal).

+--

Table F-7 - Ccntrol Part (Redirection) Options

F.14 Compiler Ortions F-59

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation
and not to this report.

B-2

, q ' I II I II I IIEIW

Version 3.5 Ada/M PSE Handbock
29 March 1991

F.16 Linker Options

Option Function

DEBUG Produces a linked container to be

debugged. Default: NODEBUG.

LOAD Deferred.

MEASURE Produces a linked container to be
analyzed, Default: NO MEASURE.

NO O SUBSYSTEM Does not automatically pull in Ada/M
predefined TO subsystem phases
SYSTEM 10 1 and SYSTEM TO 2.
Default: -OSUBSYSTEM:

PARTIAL Produces an incomplete linked
container with unresolved
references. Default: NO PARTIAL.

RTL SELECTIVE Similar to the SELECTIVE option
except that it only refers to RTLIB
units. This option is not supported

during phase links.
Default: NORTLSELECTIVE.

SEARCH Explicitly searches for the units to
be included in the linked container.
Default: SEARCH for final links;
NOSEARCH for phase links.

SELECTIVE Maps into the program only the
subprograms called by the main
subprogram. Default: SELECTIVE for
final links; NO SELECTIVE for phase
links.

Table F-10 - Ada/M Linker Special Processing Options

F-62 F.16 Linker Options

Ada/M PSE Handbook Version 3.5
29 March 1991

+--

Option Function

No option Linker summary listing aLways
produced.

DEBUGMAP Deferred.

ELAB LIST Generates an elaboration order
listing. Default: NO ELAB LIST.

LOADMAP Generates a loadmap listing.
Default: NOLOADMAP.

LOCAL SYMBOLS Generates a symbols listing with
all internal as well as external
definitions in the program.
LOCALSYMBOLS is to be used in
conjunction with the SYMBOLS
option. If LOCAL SYMBOLS is
specified with NO SYMBOLS, a
WARNING is produced and the SYMBOLS
option is activated.
Default: NOLOCALSYMBOLS

SYMBOLS Produces a Linker symbols listing.
Default: NOSYMBOLS.

UNITS Produces a Linker units listing.
Default: NOUNITS.

--- +

Table F-11 - Linker Listings Options

F.16 Linker Options - F-63

Version 3.5 Ada/M PSE Handbook
29 March 1991

--

I Option Function
--

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

OUT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table F-12 - Control Part (Redirection) Options

F-64 F.16 LinkerOptions

Ada/M PSE Handbook Version 3.529 March 1991

F.17 Exporter Options

+--

Option Function
+---

AYK14 Generate image for the AN/AYK-14.
Default: UYK44.

DEBUG Permits the generation of a load mcdu±e
with all debugging facilities available.
When NO DEBUG is in effect, no debugging
facilities are made available.
Default: NO DEBUG.

DYNAMIC Deferred.

LOAD Deferred.

MEASURE Permits the generation of a load module
with all performance measurement
facilities available. When NO MEASURE
is in effect, no performance measurement
facilities are made available.
Default: NOMEASURE.

NOUYK44 Generate image for the AN/AYK-14.

Default: UYK44.

--

Table F-13 - Ada/M Special Processing Options

F.17 Exporter Options - F-65

Version 3.5 Ada/M PSE Handbook
29 March 1991

+--

1option Function

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
tusually Wue Lerminal).

OUT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table F-14 - ControlPart (Redirection) Options

F-66 F.17 Exporter- Options

Ada/M PSE Handbook Version 3.529 March 1991

+---

Option Function
+-- -

DEBUGMAP Deferred

LOADMAP Produces an Exporter Loadmap
Listing. This listing shows the
locatio of each program section for
each phase. Default: NOLOADMAP.

LOCAL SYMBOLS includes names local to library
package bodies in the Exporter
Symbol Definition Listing, if
produced. This option has no effect
if NO SYMBOLS is in effect.
Default: NO LOCAL SYMBOLS
(include only names
which are externally visible).

RTEXEC Produces executive listings instead
of user application listings. It can
only be used with the /LOADMAP
option, i.e., /LOADMAP/RTEXEC.
Default: NO RTEXEC.

SYMBOLS Produces an Exporter Symbol
Definition Listing. This listing
shows the virtual and physical
locations of the symbols in memory
for each virtual memory phase.
Default: NOSYMBOLS.

UNITS Produces an Exporter Units Listing.

Default: NOUNITS.

--

Table F-15 - Ada/M Exporter Listing Options

F.17 Exporter Options F-67

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32 768 .. 32_767;
type LONGINTEGER is range -2_147_483_647 .. 2_147 483 647;

type FLOAT is digits 6 range
-(16#0.FFFFF8#E63) .. (16#0.FFFFF8#E63);

type DURATION is delta 2.0 ** (-14) range
-131_071.0 .. 131 071.0;

end STANDARD;

C-1

Ada/M PSE Handbook Version 2.5
29 March 199i

Appendix F

The Ada Language for the AN/UYK-44 and AN/AYK-14 Targets

The source language accepted by the compiler is Ada, as
described in the Military Standard, Ada Programming Language,
ANSI/MIL-STD-1815A-1983, 17 February 1983 ("Ada Language
Reference Manual").

The Ada definition permits certain implementation
dependencies. Each Ada implementation is required to supply a
complete description of its dependencies, to be thought of as
Appendix F to the Ada Language Reference Manual. This section is
that description for the AN/UYK-44 and AN/AYK-14 targets.

F.1 Options

There are several compiler options provided by all ALSiN
compilers that directly affect the pragmas defined in the Ada
Language Reference Manual. These compiler options currently
include the CHECKS and OPTIMIZE options which affect the SUPPRESS
and OPTIMIZE pragmas, respectively. A complete list of ALS/N
compiler options can be found in Section 9.

The CHECKS option enables all run-time error checking for tne
source file being compiled, which can contain one or mote
compilation units. This allows the SUPPRESS pragma to be used in
suppressing the run-time checks discussed in the Ada Language
Reference Manual, but note that the SUPPRESS pragma(s) must be
applied to each compilation unit. The NO CHECKS option disables
all run-time error checking for all compilation units within the
source file and is equivalent to SUPPRESSing all run-time checks
within every compilation unit.

The OPTIMIZE option enables all compile-time optimizations
for the source file being compiled, which can contain one or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
performed, but note that the OPTIMIZE pragma must be applied to
each compilation unit. If the OPTIMIZE pragma is not present,
the ALS/N compiler's Global Optimizer tends to optimize for TIME
over SPACE. The NO OPTIMIZE option disables all compile-time
optimizations for all compilation units within the source file
regardless of whether or not the OPTIMIZE pragma is present.

In addition to those compiler options normally provided by
the ALS/N Common Ada Baseline compilers, the Ada/M compiler also
implements the EXECUTIVE, DEBUG, and MEASURE options.

F.1 Options F-01

Version 3.5 Ada/M PSE HandOCCK
29 March 1991

The EXECUTIVE compiler option enables processing of PRAGMA
EXECUTIVE and allows WITH of units compiled with the RTEONLY
option. IF NOEXECUTIVE is specified on the command line, tne
pragma will be ignored and will have no effect on the generated
code.

The DEBUG compiler option enables processing of ?RAGMA DEBUG
tc provide debugging support. If NODEBUG is specified, tne
DEBUG pragmas shall have no effect. Program units containing
DEBUG pragmas and compiled with the DEBUG compiler option may be
linked with program units containing DEBUG pragmas and compiled
with the NO DEBUG option; only those program units compiled with
the DEBUG option shall have additional DEBUG support.

The MEASURE compiler option enables run-time calls to
Run-Time Performance Measurement Aids (RTAids) to record the
entrance into all subprograms whose bodies are in the
compilation. Program units compiled with the MEASURE option may
be linked with program units not compiled with the MEASURE
option; at run-time, only those subprograms in program units
compiled with the MEASURE ootion shall have this additional
MEASURE support.

F-02 F.1 Options

Ada/M PSE Handboo Version 3.5
29 March :991

F.2 Pragmas

Both implementation-defined and Ada language-defined pragnas
are provided by all ALS/N compilers. These paragraphs descrioe
the pragmas recognized and processed by the Ada/M compiler. The
syntax defined in Section 2.8 of the Ada Language Reference
Manual allows pragmas as the only element in a compilation,
before a compilation unit, at defined places within a compi'azion
unit, or following a compilation unit. Ada/M associates pragmas
with compilation units as follows:

a. If a pragma appears before any compilation unit in a
compilation, it will affect all following compilation units,
as specified below and in Section 10.1 of the Ada Language
Reference Manual.

b. If a pragma appears inside a compilation unit, it will be
associated with that compilation unit, and with the listings
associated with that compilation unit, as described in the
Ada Language Reference Manual, or below.

c. If a pragma follows a compilation unit, it will be associated
with the preceding compilation unit, and effects of the
pragma will be found in the container of that compilation
unit and in the listings associated with that container.

The pragmas MEMORY SIZE, STORAGE UNIT, and SYSTEM NAME are
described in Section 13.7 of the Ada-Language Reference Manual.
They may appear only at the start of the first compilation when
creating a program library. In the ALS/N, however, since program
libraries are created by the Program Library Manager and not by
the compiler, the use of these pragmas is obviated. If they
appear anywhere, a diagnostic of severity level WARNING is
generated.

F.2 Pragmas F-03

Version 3.5 Ada/M PSE HandbcCK
29 March 1991

F.2.1 Language-Defined Pragmas

The following notes specify implementation-specific chances
to those pragmas described in Appendix B of the Ada Language
Reference Manual. Unmentioned pragmas are implemented as defined
in the Ada Language Reference Manual.

pragma :NL:NE (arg {,arg});

The arguments designate subprograms. There are three
i.nstances in which the INLINE pragma is ignored. Each
of these cases produces a warning message which states
that the INLiNE did not occur.

a. If the compilation unit containing the INLINEd
subprogram depends on the compilation unit of its
caller, a routine call is made instead.

b. if the INLINEd subprogram's compilation unit
depends on the compilation unit of its caller (a
routine call is made instead).

c. If an immediately recursive subprogram call is made
within the body of the INLINEd subprogram (the
pragma INLINE is ignored entirely).

pragma INTERFACE (languagename, subprogramname);

The language_name specifies the language and type of
interface to be used in calls used to the externally
supplied subprogram specified by subprogramname. The
only value allowed for the first argument (language
name) is MACRO NORMAL. MACRO NORMAL indicates that
parameters wilf be passed on the stack and the calling
conventions used for normal Ada subprogram calls will
apply.

You must ensure that an assembly-language body
container will exist in the program library before
linking.

F-04 F.2.1 Language-Defined Pragmas

AdaiM PSE Handbook Version 3.5
29 Marcn 1991

pragma OPTIMIZE (arg);

The argument is either TIME or SPACE. if T:ME is
specified, the optimizer concentrates on optimizing
code execution time. if SPACE is specified, the
optimizer concentrates on optimizing code size. The
default is If the OPTIMIZE option is enabled and pragma
OPT:MIZE is not present, global optimization is still
performed with the default argument, SPACE. Program
units containing OPTIMIZE pragmas and compiled with the
OPTIMIZE option may be linked with program units
containing OPTIMIZE pragmas and compiled with the
NOOPTIMIZE option; but only those program units
compiled with the OPTIMIZE option will have global
optimization support. SPACE.

pragma PRIORITY (arg);

The argument is an integer static expression in the
range 0..15, where 0 is the lowest user-specifiable
task priority and 15 is the highest. it the value of
the argument is out of range, the pragma will have no
effect other than to generate a WARNING diagnostic. A
value of zero will be used if priority is not defined.
The oragma will have no effect when not specified in a
task (type) specification or the outermost declarative
part of a subprogram. If the pragma appears in the
declarative part of a subprogram, it will have no
effect unless that subprogram is designated as the main
subprogram at link time.

pragma SUPPRESS (arg (,arg});

This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW CHECK applies only to integer
operations; and PRAGMA SUPPRESS has effect only within
the compilation unit in which it appears, except that
suppression of ELABORATION CHECK applied at the
declaration of a subprogram or task unit applies to all
calls or activations.

F.2.1 Language-Defined Pragmas F-05

Version 3.5 Ada/M PSE Handbook
29 March 1991

F.2.2 Implementation-Defined Pragmas

This paragraph uescr.bes the use and meaning of those pragmas
recognized by Ada/M which are not specified in Appendix B of :ne
Ada Language Reference Manual.

pragma DEBUG;

This pragma enables the inclusion of full symbolic
information and support for he Embedded Target
Debugger. The DEBUG PRAGM.A is enabled by the DEBUG
command line option and has no effect if this option is
not provided. Thib 2 ragma must appear within a
compilation unit, before the first declaration nr
statement.

pragma EXECUTIVE [(arg)];

This pragma allows you to specify tnat a -tmpilation
unit is to run in the executive state of the machine
and/or utilize privileged instructions. The pragma has
no effect if the compiler option MO EXECUTIVE is
enabled, either explicitly or by default.

:f PRAGMA EXECUT:VE is specified without an argument,
executive .,tate is in effect for th. :ompilation unit
and the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (INHERIT) is specified, a subprogram in the
compilation unit inherits the state of its caller arl
the code generator does not generate privileged
instructions for the compilation unit. If PRA'MA
EXECUTIVE (PRIVILEGED) is specified, the executive
state is in effect and the code generator may generate
privileged instructions for the compilation unit. In
the absence of PRAGMA EXECUTIVE, the compilation unit
executes in task state and the code gener.ator does not
generate privileged instructions.

PRAGMA EXECUTIVE is applied once per compilation unit,
so its scope is the entire compilation unit. PRAGMA
EXECUTIVE may appear between the context clause and the
outermost unit. If there is no context clause, PRAGMA
EXECUTIVE must appear within that nit before the first
declaration or statement. The placement of the pragma
before the context clause has no effect on any or all
following compilation units. If PRAGMA EXECUTIVE
apoears in the specification of a compilation unit, it
must also appear in the body of that unit, and vice
versa. If th. pragma appears in a specification but is
absent from the body, you are warned and the pragma is
effective. If the pragma appears in the body of a
compilation unit, but is absent from the corresponding

F-06 F.2.2 Implementation-Defined Pragmas

Ada/M PSE Handbook Version 2.5
29 March .99.

specification, you are warned and the pragma has no
effect. PRAGMA EXECUTIVE does not propagate to
subunits. If a subunit is compiled without PRAGMA
EXECUTIVE and the parent of the subunit is compiled
with PRAGMA EXECUTIVE, you are warned and PRAGMA
EXECUT:VE has no effect on tne subunit.

pragma FAST_ NTERR1JPTENTRY (entry_name, IMMEDIATE);

This pragma provides for situations of high interrupt
rates with simple processing per interrupt, (such as
adding data to a buffer), and where complex processin;c
occurs only after large numbers of these interrupts,
(such as when the buffer is full). This allows for
lower overhead and faster response capability by
restricting you to disciplines that are commensurate
with limitations normally found in machine level
interrupt service routine processing.

pragma MEASURE (extraction set, [arg {,arg}]);

This pragma enables one or more performance measurement
features. Pragma MEASURE specifies a user-defined
extraction set for the Run-Time Performance Measurement
Aids and Embedded Target Profiler. The user-defined
extraction set consists of all occurences pragma
MEASURE throughout the program. Extraction set is a
nume:ic literal, which is an index into a user-supplied
table. Arg is a variable or a list of variables whose
values are reported at this point in the execution.
These values descrioe tnh nature (TYPE) of the values
collected to an independent data reduction p~ogram.
Prgma MEASURE is enabled iy the MEASURE command line
option and has no effect if this option is not
provided. This pragma should be applied to a package
body rather than a package specification.

pragma STATIC (INTERRUPTHANDLER TASK);

The pragma STATIC is only allowed immediately after the
declaration of a task body containing an immediate
interrupt entry. The argument is
INTERRUPT HANDLERTASK. The effect of this pragma will
be to allow generation of nonreentrant and nonrecursive
code in a compilat.ion unit, and to allow static
allocation of all data in a comnilation unit. Tnis
pragma shall be used to allow for procedures within
immediate (fast) interrupt entries. The effect will be
for the compiler to generate nonzeentrant code for the
affected procedure bodies. If a STkTIC procedure is
called recursively, the program is erroneous.

F 2.2 Implementation-Defined Pragmas F-07

Vers.on 3.5 Ada/M PSE HandOocK
29 March 1991

pragma TICK (arg);

This is a system configuration pragma. It takes a
single argument of type universal real, which specifies
the value of the named number SYSTEM.TICK. This pragma
may appear only at the start of the first compilation
nen creating a program library. If this pragma

appears elsewhere, a diagnostic of severity WARNING is
generated.

pragma TIT!E (arg);

This is a listing control pragma. It takes a single
argument of type string. The string specified will
appear on the second line of each page of the source
listing produced for the compilation unit within which
it appears. The pragma should be the first lexical
unit to appear within a compilation unit (excluding
comments). If it is not, a warning message is issued.

pragma TRiVIALENTRY (NAME: entrysimplename);

This pragma is only allowed within a task specification
after an entry declaration and identifies a
TrivialEntry to the system. A trivial entry
represents a synchronization point, contained in a
normal Ada task, for rendezvous with a fast interrupt
entry body. The body of a trivial entry must be null.

pragma UNMAPPED (arg {,argj);

The effect of this pragma is for unmapped (i.e., not
consistently mapped within the virtual space)
allocation of data in a compilation unit. The
arguments of this pragma are access types to be
unmapped. If a program tries to allocate more UNMAPPED
space than is available in the physical configuration,
STORAGE ERROR will be raised at run-time. PRAGMA
UNMAPPED must appear in the same declarative region as
the type and after the type declaration.

F-08 F.2.2 Implementation-Defined Pragmas

Ada/M PSE Handbook Version 3.5
29 March 1991

F.2.3 Scope of Pragmas

The scope for each pragma previously described as differing
from the Ada Language Reference Manual is given below.

DEBUG Applies to the compilation unit in which the -ragma
appears.

EXECUTIVE Applies to the compilation unit in which the pragma
appears, i.e., to all subprograms and tasks wit-;-
the unit. Elaboration code is not affected. The
pragma is not propagated from specifications to
bodies, or from bodies to subunits. The pragma
must appear consistently in the specification,
body, and subunits associated with a library unit.

FASTINTERRUPTENTRY
Applies to the compilation unit in which the pragma
appears.

:NLINE Applies only to subprograms named in its
arguments. If the argument is an overloaded
subprogram name, the INLINE pragma applies to
all definitions of that subprogram name which
appear in the same declarative part as the
INLINE pragma.

:NTERFACE Applies to all invocations of the named
imported subprogram.

MEASURE No scope, but a WARNING diagnostic is
generated.

MEMORYSIZE No scope, but a WARNING diagnostic is
generated.

OPTIMIZE Applies to the entire compilation unit in
which the pragma appears.

PRIORITY Applies to the task specification in which it
appears, or to the environment task if it
appears in the main subprogram.

STATIC Applies to the compilation unit in which the pragma
appears.

STORAGEUNIT No scope, but a WARNING diagnostic is
generated.

SUPPRESS Applies to the block or body that contains
the declarative part in which the pragma
appears.

F.2.3 Scope of Pragmas F-09

Version 3.5 Ada/M PSE Handboc<
29 March 1991

SYSTEM-NAME No scope, but a WARNING diagnostic is
generated.

TICK Applies to the entire program library in
which the pragma appears.

TITLE The compilation unit within which :h oragma
occurs.

TRIVIALENTRY Applies to the compilation unit in which the pragma
appears.

UNMAPPED Applies to all objects of the access type
named as arguments.

F-10 F.2.3 Scope of Pragmas

Ada/M PSE Handbook Version 3.5
29 March 191

F.3 Attributes

The following notes augment the language-required defi-.i--icns
of the predefined attributes found in Appendix A of the Ada
Language Reference Manual.

T'MACHINEEMAX is 63.

T'MACHYINEEMIN is -64.

T'MACHINEMANTISSA is 6.

T'MACHINEOVERFLOWS is TRUE.

T'MACHINERADIX is 16.

T'MACHINEROUNDS is FALSE.

F.3 Attributes F1

Versicn 3.5 Aca,'M PSE Han.CZ=CK
29 March~ 1992.

FA4 Predefined Language Environment

The predefined Ada language environment consists of the
packages STANDARD and SYSTEM, which are described below.

F.4.1 Package STANDARD

The pack age STANDARD contains the following definitions in
addition to those specified in Appendix C of the Ada Language
Reference Manna!.

TYPE boolean IS (false, true);
FOR boolean'S:ZE USE 1;

TYPE integer IS RANGE -32 768 .. 32 767;
TYElong integer IS RANGE -2_247 483648 .. 2_147_483_647;

TYPE float IS DIGITS 6 RANGE
-(!6*0.FFFFF8*E63) .. (16#O.FFFFFSOE63);

-- Add.:ions to predefined subtypes:

S7371PE long natural :S long integer RANGE 0..integer'LAST;
SIB77 longpositive IS long integer RANGE l..integer'LAST;

FOR character'SIZE USE 8;
TYP~E string :S ARRAY (positive RANGE W>) OF character;
PRAGMA PACK(string);

TYPE duration 1S DELTA 2.0 ** (-14)
RANGE -131 071.0 .. 131_071.0;

-- The predefined exceptions:

constraint error : exception;
numeric error : exception;
program error : exception;
storage error : exception;
taSKing error : exception;

F- 12 F.4.1 Package STANDARD

Ada/M PSE Handbook Version 3.5
29 Marcn 1991

F.4.2 Package SYSTEM

The SYSTEM packages for Ada/M are as follows:

F.4.2.1 AN/UYK-44 SYSTEM

The package SYSTEM for the AN/UYK_44 is:

TYPE name IS (anuyk44, anaykl4);
system_name : CONSTANT system.name := system.anuyk44;
storage_unit : CONSTANT : 16;
memory_size : CONSTANT : 65 536;
TYPE address IS RANGE 0..system.memory_size - 1;
FOR address'SIZE USE 16;

-- System Dependent Named Numbers

min int : CONSTANT :-(2"31);
max int : CONSTANT : (2**31)-1;
maxdigits : CONSTANT : 6;
max-mantissa : CONSTANT : 31;
fine delta : CONSTANT

20.0000 0000 0000 0000 0000 0000 0000 001#;
tick : CONSTANT := 3.f25e-O5;

-- 1/32000 seconds is the basic clock period.

-- Other System Dependent Declarations

SUBTYPE priority IS integer RANGE 0..15;
TYPE entrykind IS (normal, immediate);

physical memory size : CONSTANT : 2**22;
TYPE physical_aadress IS

RANGE 0..system.physicalmemorysize - 1;

TYPE externalinterrupt word IS RANGE 0 .. 65_536;

-- Address clause (interrupt) address codes for the
ANUYK-44

Class I Unhandled address : CONSTANT
address 16#0800#;

ClassIIUnhandled address : CONSTANT
address 16#1800#;

ClassIIIUnhandled address : CONSTANT
address 16#2800#;

F.4.2.1 AN/UYK-44 SYSTEM F-13

Version 3.5 Ada/M PSE Handbook
29 March 1991

------------------- Class I interrupts---------------------
CPMemoryResume-address :CONSTANT

address 16#1000#;
CPMemory_Parity_address :CONSTANT

address 16#1400*;
TOCMemory_Parity-address :CONSTANT

address 16*1700#;
IOCMemory_Resume-address :CONSTANT

address 16#lAOO#;
PowerFault-address :CONSTANT

address 16#IFOO*;

------------------- Class II interrupts--------------------
CPInstructionFault-address CONSTANT

address 16#2200#;
ExecutiveModeFault-address CONSTANT

address 16#2300#;
IOCInstructionFault-address CONSTANT

address 16*2400#;
IOCProtectFault-address :CONSTANT

address 16#2500#;
CPProtectFault-address :CONSTANT

address 16*2900#;

once-only pti :CONSTANT duration :=0.0;
-- Used to indicate that a PTI is not to be periodic.

SUBTYPE pti address IS address RANGE 16*2F01#..16#2FlF*;
TYPE pti_state IS (active,inactive,unregistered);

------------------- Class 111 (I/0) interrupts-------------
MMIODiscreteInterrupt-address :CONSTANT

address 16#3C00*;
MMIO10ExternalInterrupt-address : CONSTPANT

address 16#3D00*;
MMI1Output_DataReady_ address : CONSTANT

address 16#3E00*;
MMIO10InputDataReady_,address :CONSTANT

address 16#3F00*;
IbCIntercomputer Timeout-address : CONSTANT

address 16#3C00#;
IOCExternal-Int Discrete-address :CONSTANT

address := 6#3D00#;
IOCOutput ChainInterrupt_address :CONSTANT

address 16#3E00*;
IbCInputChain-Interrupt-address : CONSTANT

address :=16#3F00*;

F- 14 F.4.2.1 AN/tJYK-44 SYSTEM

Ada/M PSE Handbook Version 3.5
29 March 1991

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implic-_
-- checks suppressed (i.e., pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate
-- exception raised when required, and then the exception is
-- either handled or the Ada program terminates.

access-check : EXCEPTION;
discriminant check : EXCEPTION;
index check : EXCEPTION;
lengthcheck : EXCEPTION;
range check : EXCEPTION;
division check : EXCEPTION;
overflow check : EXCEPTION;
elaboration-check : EXCEPTION;
storage_check : EXCEPTION;

-- implementation-defined exceptions.
unresolved reference : EXCEPTION;
systemerror : EXCEPTION;
capacityerror : EXCEPTION;

F.4.2.1 AN/UYK-44 SYSTEM F-15

Version 3.5 Ada/M PSE HandbaoC
29 March 1991

F.4.2.2 AN/AYK-14 SYSTEM

The package SYSTEM for the AN/AYK-14 is:

TYPE name IS (anuyk44, anaykl4);
system-name : CONSTANT system.name := system.anaykl4;
storageunit : CONSTANT := 16;
memory size : CONSTANT := 65 536;
TYPE address IS RANGE 0..system.memory_size - 1;
FOR address'SIZE USE 16;

-- System Dependent Named Numbers

min int : CONSTANT :-(2"'1);
max int : CONSTANT : (2**31)-1;
max digits : CONSTANT : 6;
max mantissa : CONSTANT := 31;
fine delta : CONSTANT

20.0000_0000 0000 0000 0000 0000 0000 001#;
tick : CONSTANT :=- 3.f25e-O5; -

-- 1/32000 seconds is the basic clock period.

-- Other System Dependent Declarations

SUBTYPE priority IS integer RANGE 0..15;
TYPE entry_kind IS (normal, immediate);

physical memorysize : CONSTANT : 2**22;
TYPE physical_address IS

RANGE 0..system.physicalmemory_size - 1;

TYPE external interruptword IS RANGE 0 .. 65_536;

-- Address clause (interrupt) address codes for the
ANAYK-14

ClassIUnhandled address : CONSTANT
address := 16#0800#;

Class II Unhandled address : CONSTANT
address := 16#1800#;

ClassIII Unhandled address : CONSTANT
address := 16#2800#;

F-16 F.4.2.2 AN/AYK-14 SYSTEM

Ada/M PSE Handbook Version 3.3
29 March "99:i

-------------------- Class I interrupts--------------------
MemoryResumeaddress : CONSTANT

address 16#1000#;
Memory_Parity_address : CONSTANT

address 16#1400#;
ThermalOverload address : CONSTANT

address 16*1900#;
10_Failure address : CONSTANT

address =6*.1 00#;
HardwareBITFault address : CONSTANT

address 16#!C00#;
HardwareFaultWarning_address : CONSTANT

address 16#1D00#;
PowerFault address : CONSTANT

address 16#!F00#;

-------------------- Class 11 interrupts-------------------
CP Instruction Fault address CONSTANT

address 16#2200#;
Executive ModeInstructionFault address :

CONSTANT
address 16#2300#;

IO InstructionFault address : CONSTANT
address 16#2400#;

SystemReset address : CONSTANT
address 16#25U00;

Overtemp_address : CONSTANT
address 16#2700#;

Memory_ProtectFaultaddress : CONSTANT
address 16#2900#;

ExternalInterrupt_2_address : CONSTANT
address 16#2C00#;

ExternalInterrupt_3_address : CONSTANT
address 16#2D00#;

ExternalInterrupt_4_address : CONSTANT
address 16#2E00#;

once onlypti : CONSTANT duration := 0.0;
-- Used to indicate that a PTI is not to be periodic.

SUBTYPE ptiaddress IS address RANGE 16#2F01#..16#2FlF#;
TYPE ptistate IS (active,inactive,unregistered);

-------------------- Class III (I/O) interrupts------------
IOChannelAbnormal address : CONSTANT

address 16#3C00#;
ExternalInterruptaddress : CONSTANT

address := 16#3D00#;
OutputChainInterruptaddress : CONSTANT

address 16#3E00#;
Input_ChainInterruptaddress : CONSTANT

address := 16#3F00#;

F.4.2.2 AN/AYK-14 SYSTEM F--7

Version 3.5 Ada/M PSE Handze
29 March 1991

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implicit
-- checks suppressed (i.e., pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate
-- exception raised when required, and then the exception is
-- either handled or the Ada program terminates.

access-check : EXCEPTION;
discriminant check : EXCEPTION;
index check : EXCEPTION;
lengthcheck : EXCEPTION;
rangecheck : EXCEPTION;
division check : EXCEPTION;
overflow check : EXCEPTION;
elaoration check : EXCEPTION;
storagecheck : EXCEPTION;

-- implementation-defined exceptions.
unresolved reference : EXCEPTION;
system error : EXCEPTION;
capacityerror : EXCEPTION;

F-18 F.4.2.2 AN/AYK-14 SYSTEM

Ada/M PSE Handbook Version 2.529 March !99!

F.5 Character Set
Ada compilations may be expressed using the following

characters in addition to the basic character set:

rower case letters:

a b c d e f g h i j k I m n o p q r s t u v w x , z

special characters:

! $ % ? @] { }

The following transliterations are permitted:

a. Exclamation point for vertical bar,

b. Colon for sharp, and

c. Percent for double-quote.

F.5 Character Set F-:9

Version 3.5 Ada/M PSE HandtzCK
29 March 1991

F.6 Declaration and Representation Restrictions

Declarations are described in Section 3 of the Ada Language
Reference Manual, and representation specifications are describe&
in Section 13 of the Ada Language Reference Manual and discussed
here.

In the following specifications, the capitalized word S:Zr.
indicates the number of bits used to represent an obect of the
type under discussion. The upper case symbols D, L, R,
correspond to those discussed in Section 3.5.9 of the Ada
Language Reference Manual.

F.6.1 Integer Types

Integer types are specified with constraints of the form:

RANGE L..R

where:

R <= SYSTEM.MAX_:NT & L >= SYSTEM.MIN INT

For a prefix "t" denoting an integer type, length specifications
of the form:

FOR t'SIZE USE n

may specify integer values n such that n in 2..16,

R <= 2**(n-l)-l & L >= -(2**(n-ll

or else such that

R <= (2**n)-l & r, >= 0

and 1 < n <= 15.

For a stand-alone object of integer type, a default SIZE of 16 is
used when:

R <= 2**15-1 & L >= -2**15

Otherwise, a SIZE of 32 is used.

For components of integer types within packed composite
objects, tie smaller of the default stand-alone SIZE or the SIZE
from a length specification is used.

F-20 F.6.1 Integer Types

AdaiM PSE Handbook Version 3.529 March i991

F.6.2 Floating Types

Floating types are specified with constraints of the form:

DIGiTS D

where D is an integer in the ran-e 1 through 6.

For a prefix "t" denoting a floating point type, lengt.
specifications of tne form:

FOR t'SIZE USE n;

may specify integer values n = 32 when 0 <= 6. All floating
point values have SILL = 32.

F.6.3 Fixed Types

Fixed types are specified with constraints of the form:

DELTA D RANGE L..R

where:

MAX (ABS(R), A9S(L))
-------------------- <= 2"'31-1.

actual-delta

The actual delta defaults to the largest integral power of 2 less
than or equal to the ipecified delta D. (This implies that fixed
values are stored right-cligned.;

For fixed point types, length specifications of the form:

for T'SIZE use N;

are permitted only when N in 1 .. 32, if:

R - actual deita <= 2**(N-!)-l * actual delta, and
L + actual-delta >= -2**(n-l) * actual)aelta

or

R - actual-delta <= 2**(N)-l * actual-delta, and
L >= 0

F.6.3 Fixed Types F-21

Version 3.5 Ada/M PSE HandbccK
29 March 1991

For stand-alone objects of fixed point type, a default size of 22
is used. For components of fixed point types within pacKed
composite objects, the size from the length specification will be
used.

For specifications of the form:

FOR t'SMALL USE n;

are permitted for any value of X, such that X <= D. X must be
specified either as a base 2 value or as a base 10 value. Note
that when X is ioecified as other than a power of 2, actual delta
will still be tne largest integreal power of two less than X.

F.6.4 Enumeration Types

In the absence of a representation specification for an
enumeration type "t," the internal representation of t'FIRST is
0. The default size for a stand-alone object of enumeration type
"t" is 16, so the internal representations of t'FIRST and t'LAST
both fall within the range

-2** 5 .. 2"'15 - 1.

For enumeration types, length specifications of the form:

FOR t'SIZE USE n;

and/or enumeration-representations of the form:

FOR t USE <aggregate>;

are permitted for n in 2..16, provided the representations and
the SIZE conform to the relationship specified above.

Or else for n in 1..16, is supported for enumeration types
and provides an internal representation of:

t'FIRST >= 0 .. t'LAST <= 2**(t'SIZE) - 1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE and the SIZE
from a length specification is used.

Enumeration representations for types derived from the
predefined type STANDARD.BOOLEAN will not be accepted, but length
specifications will be accepted.

F-22 F.6.4 Enumeration Types

Ada/M PSE Handbook Version 2.5
29 March :997

F.6.5 Access Types

For access type, "t," length specifications of the form:

FOR t'SIZE USE n;

will not affect the runtime implementation of "t," therefore n
16 is the only value permitted for SIZE, which is the value
returned by the attribute.

For collection size specification of the form:

FOR t'STORAGESIZE USE n;

for any value of "n" is permitted for STORAGESIZE (and that
value will be returned by the attribute call). The collection
size specification will affect the implementation of '"t" and its
collection at runtime by limiting the number of objects for type
"t" that can be allocated.

The value of t'STORAGESIZE for an access type "too specifies
the maximum number of storageunits used for all objects in the
collection for type "t." This includes all space used by the
allocated objects, plus any additional storage required to
maintain the collection.

F.6.6 Arrays and Records

For arrays and records, a length specification of the form:

FOR t'size USE n;

may cause arrays and records to be packed, if required, to
accommodate the length specification. If the size specified is
not large enough to contain any value of the type, a diagnostic
message of severity ERROR is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space
requirements are minimized at the possible expense of data access
time and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..15 from the right. 16 starts at the right of the
next higher numbered word. Each location specification must
allow at least n bits of range, where n is large enough to hold
any value of the subtype of the component being allocated.
Otherwise, a diagnostic message of severity ERROR is generated.
Components that are arrays, records, tasks, or access variables
may not be allocated to specified locations. If a specification

F.6.6 Arrays and Records F-23

Version 3.5 Ada/M PSE HandbooK
29 March 1.991

of this form is entered, a diagnostic message of severity ERROR

is generated.

For records, an alignment clause of the form:

AT MOD n

specify alignments of 1 word (word alignment) or 2 words
(doubleword alignment).

If it is determinable at compile time that the SIZE of a
record or array type or subtype is outside the range of
STANDARD.LONG INTEGER, a diagnostic of severity WARNING is
generated. Declaration of such a type or subtype would raise
NUMERICERROR when elaborated.

F.6.7 Other Length Specifications

Length Specifications are described in Section 13.2 of the

Ada Language Reference Manual.

A I .gth specification for a task type "t" of the form:

FOR t'STORAGESIZE use n;

specifies the number of SYSTEM.STORAGE UNITS that are allocated
for the execution of each task object of type "t." This includes
the runtime stack for the task object but does not include
objects allocated at runtime by the task object. If a
t'STO"AGE SIZE is not specified for a task type "t," the default
value is §K (words).

A length specification for a task type "t" of the form:

FOR t'SIZE USE n;

is allowable only for n = 32.

F-24 F.6.7 Other Length Specifications

Ada/M PSE Handbook Version 3.5
29 March 1991

F.7 System Generated Names

Refer to Section 13.7 of the Ada Language Reference Manua.
and the section above on the Predefined Language Environment fcr
a discussion of package SYSTEM.

The system name is chosen based on the target(s) supported,
but it cannot be changed. In the case of Ada/M, tne system name
is ANUYK44 or ANAYK14.

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manual
for a description of address clauses. All rules and restrictisns
described there apply. In addition, the following restrictions
apply.

An address clause may designate a single task entry. Such an
address clause is allowed only within a task specification. The
meaningful values of the simple_expression are the allowable
interrupt entry addresses as defined in Table F-l. The use of
other values will result in the raising of a PROGRAM ERROR
exception upon creation of the task.

If more than one task entry is equated to the same interrupt
entry address, the most recently executed interrupt entry
registration permanently overrides any previous registrations.

At most one address clause is allowed for a single task
entry. Specification of more than one interrupt address for a
task entry is erroneous.

Address clauses for objects and code other tha task entries
are allowed by the Ada/M target, but they have no effect beyond
changing the value returned by the 'ADDRESS attribute call.

F.8 Address Clauses F-25

Versi.on 3.5 Ada/M PSE Handbook
29 March.199l

+ -

AN/tJYK-44 Interrupt Summary

1 cl.ass 0 interrupts (with interrupt entry address) include:
*---

o Class I tnhandled Interruot 16*0800*

Class I interrupts (with interrupt entry address) include:
+--

" Class 11 tnhandled 16#1800#
o CP Memory Resume 16*1000#
o CP Memory Parity 16#1400*
o IOC Memory Parity 16*1700#
o TOG Memory Resume 16*lAOO#
o Power Fault 16#lFOO#

+- - - - -------------------- --

Class II interrupts (with interrupt entry address) include: I

o Class III tnhandled 16*2800*
o Floating Point Over/Underflow 16*2100# UNDEFINABLE
o CP Instruction Fault 16*2200*
o Executive Mode Fault 16*2300*
" IOC Instruction Fault 16*2400*
" IOC Protect Fault 16#2500#
o Executive Return 16*2600* UNDEFINABLE
o Overtemp address 16*2700#
o CP Protect Fault 16f7900#
" Real-Time Clock 16 Z00# UNDEFINABLE
o Monitor Clock l6*jFOO* UNDEFINABLE

+---.

Table F-la - Interrupt Entry Addresses

F- 26 F.8 Address Clauses

Ada/M PSE Handbook Version 3.529 March 1991

AN/UYK-44 Interrupt Summary

Class III interrupts (with interrupt entry address) inc'de:
--------------- ---

o MMIO Discrete Interrupt 16#3C00#
o MMIO External Interrupt 16#3D00#
o MMIO Output Data Ready 16#3E00#
o MMIO Input Data Ready 16#3F00#
o IOC Intercomputer Timeout 16#3C00#
o IOC External Interrupt/Discrete 16#3D00#
o IOC Output Chain Interrupt 16#3E00#
o IOC Input Chain Interrupt 163F00#

For all class III interrupts, the following interpretations
apply:

IC => IOC, CHANNEL pair, 16#00#..16#OF# indicates 10C 0
16#10#..16#IF# indicates IOC 1
16#20#..16#2F# indicates IOC 2
16#30#..16#3F# indicates IOC 3

CC => CHANNEL number, 16#00#..16#3F# indicates channel 0..63

Table F-lb - Interrupt Entry Addresses (Continued)

F.8 'ddress Clauses F-2

Version 3.5 Ada/M PSE HandbOOK
29 March 1991

4-- -

AN/AYK-14 Interrupt Summary

4--

Class 0 interrupts (with interrupt entry address) include:
--

c Class 1 Unhandled I"nterrupt 16*0800*

--

IClass I interrupts (with interrupt en try address) include:

o Class 1.7 Unhandled 16#1800*
o CP Memory Resume 16#1000#
o CP Memory Parity 16#1400#
o Thermal Overload 16#1900#
o 10 Failure 16*#1B0*#
o Hardware SIT Fault 16#1C00#
o Hardware Fault Warning 16*1D00#
o Power Fault 16#1F00#

4--

IClass TI interrupts (with interrupt entry address) include: I
4--

o Class 1'&' Unhandled 16*2800*
o Floating Point Over/Underflow 16*2100* UNDEFINABLE
o CP instruction Fault 16*2200*
o Executive Mode Fault 16*2300*
o IOC Instruction Fault 16*2400*
" System Reset 16#2500#
" Executive Return 16#2600# UNDEFINABLE
o Overtemp, address 16#2700#
o CP Protect Fault 16#2900#
o Real-Time Clock 16#2E00t UNDEFINABLE
o Monitor Clock 16*2F00* UNDEFINABLE

---.

Table F-lc - Interrupt Entry Addresses (Continued)

F-28 F.8 Address Clauses

Ada/M PSE Handbook Versisn 3.5
29 Marchi :991

AN/AYK-14 interrupt Summary

--
Class 11I interrupts (with interrupt entry address) include:

o 1O Channel Abnormal 16*3C00*
o External Interrupt 16#3000#
o Output Chain Interrupt 16#3E00*

i o input Chain Interrupt 16*3F00*

For all class III interrupts, the following interpretations
apply:

IC => IOC, CHANNEL pair, 16*00*..16*OF* indicates IOC 0
16*10*.. 16#lF# indicates IOC I
16*20*.. 16#2F# indicates IOC 2
16*30*..i 6#3E'* indicates IOC 3

CC => CHANNEL number, .'6#00#. .16#3F# indicates channel 0. .63

TLable F-ld - Interrupt Entry Addresses (Continued)

F.8 Address Clauses F-29

Version 3.5 Ada/M PSE HandbooK
29 March 1991

F.9 Unchecked Conversions

Refer to Section 13.10.2 of the Ada Language Reference Manual
for a description of UNCHECKED CONVERSION. It is erroneous if
your Ada program performs UNCHECKED CONVERSION when the source
and target objects have different sizes.

F.10 Restrictions on the Main Subprogram

Refer to Section 10.1 (8) of the Ada Language Reference
Manual for a description of the main subprogram. The subprogram
designated as the main subprogram cannot have parameters. The
designation as the main subprogram of a subprogram whose
specification contains a formal_part results in a diagnostic of
severity ERROR at link time.

The main subprcgram can be a function, but the return value
will not be available upon completion of the main subprogram's
execution. The main subprogram may not be an import unit.

F-30 F.10 Restrictions on the Main Subprogram

Ada/M PSE Handbook Version 2.5
29 March 1991

P.11 Input/Output

Refer to Section 14 of the Ada Language Reference Manual for
a discussion of Ada Input/Output and to Section 12 of the Ada/M
Run Time Environment Handbook for more specifics on the Ada/M
input/output subsystem.

The Ada/M Input/Output subsystem provides the foliowing
packages: TEXT_1O, SEQUENTIAL 10, DIRECT 10, and LOW LEVEL :0.
These packages execute in the context of the user-written Ada
program task making the I/O request. Consequently, all of :he
code that processes an I/O request on behalf of the user-written
Ada program executes sequentially. The package IOEXCEPT:ONS
defines all of the exceptions needed by the packages
SEQUENTIAL_10, DIRECT 10, and TEXT 10. The specification of :his
package is given in Section 14.5 of the Ada Language Reference
Manual. This package is visible to all of the constituent
packages of the Ada/M I/O subsystem so that appropriate excepticn.
handlers can be inserted.

:/0 in Ada/M is performed solely on external files. No
allowance is provided in the I/O subsystem for memory resident
files (i.e., files which do not reside on a peripheral device).
This is true even in the case of temporary files. With the
external files residing on the peripheral devices, Ada/M makes
the further restriction on the number of files that may be open
on an individual peripheral device.

Section 14.1 of the Ada Language Reference Manual states that
all I/O operations are expressed as operations on objects of some
file type, rather than in terms of an external file. File
objects are implemented in Ada/M as access objects which point to
a data structure called the File Control Block. This File
Control Block is defined internally to each of the high-level 1/0
packages; its purpose is to represent an external file. The File
Control Block contains all of the I/O-specific information about
an external file needed by the high-level I/O packages to
accomplish requested I/O operations.

F.11.1 Naming Ezternal Files

The naming conventions for external files in Ada/M are of
particular importance. All of the system-dependent information
needed by the I/O subsystem about an external file is contained
in the file name. External files may be named using one of three
file naming conventions: standard, temporary, and user-derived.

F.11.1 Naming External Files F-31

Version 3.5 Ada/M PSE HandoooK
29 March 1991

F.11.1.1 Standard File Names

The standard external file naming convention used in Ada/M
identifies the specific location of the external file in terms of
the physical device on which it is stored. For this reason, you
snould be aware of the configuration of the peripheral devices on
the AN/UYK-44 or AN/AYK-14 at your particular site.

Standard file names consist of a six character prefix and a
file name of up to fourteen characters. The six character orefix
has a predefined format. The first and second characters must be
eitner "CT," "MT," or "TT," designating an AN/USH-26 Signal Data
Recorder/Reproducer Set, the RD-358 Magnetic Tape Subsystem, or
the AN/USQ-69 Data Terminal Set, respectively. These characters
must be in upper case.

The third and fourth characters specify the channel on which
the peripheral device is connected. Since there are sixty-four
channels on the Ada/M system, the values for the third and fourth
positions must lie in the range "00" to "63."

The range of values for the fifth position in the external
file name's orefix (the unit number) depends upon the device
specified by the characters in the first and second positions of
the external file name. If the specified peripheral device is
the AN/USH-26 magnetic tape drive, the character in the fifth
position must be one of the characters "0," "1," "2," or
"3." This value determines which of the four tape cartridge
units available on the AN/USH-26 is to be accessed. If the
specified peripheral device is the RD-358 magnetic tape drive,
the character in the fifth position must be one of the characters
"0," "1," "2," or "3." This value determines which of the four
tape units available on the RD-358 is to be accessed. If the
specified peripheral device is the AN/USQ-69 militarized display
terminal, the character in the fifth position must be a "0." The
AN/USQ-69 has only one unit on a channel.

The colon (:) is the only character allowed in the sixth
position. If any character other than the colon is in this
position, the file name will be considered non-standard and the
file will reside on the default device defined during the
elaboration of CONFIGUREIO.

Positions seven through twenty are optional to your Ada
program and may be used as desired. These positions may contain
any printable character you choose in order to make the file name
more intelligible. Embedded blanks, however, are not allowed.

F-32 F.ll.l.1 Standard File Names

Ada/M PSE HandbooK Version 3.5
29 March 199

The location of an external file on a peripheral device is
thus a function of the first six characters of the file name
regardless of the characters that might follow. For example, if
the external file "CT000:Old Data" has been created and not
subsequently closed, an attempt to create the external file
"CT000:New Data" will cause the exception DEVICE ERROR (rather
tnan NAME_ERROR or USE ERROR) to be raised because the oerioneral
device on channel "00" and cartridge "0" is already in .se.

You are advised that any file name beginning with "xxxxx:"
(where x denotes any printable character) is assumed to be a
standard external file name. If this external file name does noz
conform to the Ada/M standard file naming conventions, the
exception NAMEERROR will be raised.

F.11.1.2 Temporary File Names

Section 14.2.1 of the Ada Language Reference Manual defines a
temporary file to be an external file that is not accessible
after completion of the main subprogram. If the null string is
supplied for the external file name, the external file is
considered temporary. In this case, the high level 1/0 packages
internally create an external file name to be used by the lower
leve! 1/0 packages. The internal naming scheme used by the I/O
subsystem is a function of the type of file to be created (text,
direct or sequential), the temporary nature of the external file,
and the number of requests made thus far for creating temporary
external files of the given type. This scheme is consistent w&:h
the requirement specified in the Ada Language Reference Manual
that all external file names be unique.

The first three characters of the file name are "TEX," "DIR,"
or "SEQ." The next six characters are " TEMP ." The remaining
characters are the image of an integer which 3enotes the number
of temporary files of the given type successfully created. There
are two types of temporary files; one is used by SEQUENTIAL_10
and DIRECT_10, and the other is used by TEXT_IO. For instance,
the temporary external file name "TEX TEMP 10" would be the name
of the tenth temporary external file successfully created by your
Ada program through calls to TEXT_10.

F.11.1.2 Temporary File Names F-33

Version 3.5 Ada/M PSE Handboo
29 March 1991

F.11.1.3 User-Derived File Names

A random string containing a sequence of characters of length
one to twenty may also be used to name an external file.
External files with names of this nature are considered to be
permanent external files. You are caut.oned from using names
which conform to the scheme used by the I/0 subsystem to name
temporary external files (see list item "b").

it is not possible to associate two or more internal les
with the same external file. The exception USE ERROR will be
raised if this restriction is violated.

F.11.2 The FORM Specification for External Files

Section 14.2.1 of the Ada Language Reference Manual defines a
string argument called the FORM, which supplies system-dependent
information that is sometimes required to correctly process a
request to create or open a file. In Ada/M, the strinn argument
supplied to the FORM parameter on calls to CREATE and OPEN is
retained while the file is open, so that calls to the function
FORM can return the string to your Ada program. Form options
specified on calls to CREATE have the effects stated below. Form
options specified on calls to OPEN have no effect.

The REWIND and APPEND options are mutually exclucive; an
attempt to specify both options on a call to CREATE will raise
the exception USEERROR.

The NOHEAD option may be specified in combination with either
the REWIND or the APPEND option.

If one form option is specified, the FORM sLJing should
contain only the option, without any extraneous characters. If
two form options are specified, the FORM string should contain
the first form option followed by a comma followed by the second
form option. The form options may be specified in any
combination of upper and lower case.

If the supplied FORM string is longer than the maximum
allowed FORM string (13 characters), CREATE and OPEN will rai.-e
the exception USEERROR.

If the procedure CREATE does not recognize the options
specified in the FORM string, it raises the exception USE ERROR.
The procedure OPEN does not validate the contents of :he supplied
FORM string.

F-34 F.11.2 The FORM Specification for External Files

Ada/M PSE Handbook Version 3.5
29 March "99"

Positioning arguments allow control of tape before its use.
The following positicning arguments are available:

a. REWIND - specifies that a rewind will be performed prlsr :o

tne requested operation.

b. NOREW:ND - specifies that the tape remains positioned as -s.

c. APPEND - spec.fies that the tape be positioned at the _cci:aL
end of tape (LEOT) prior to the requested operation. The
LEOT is denoted by two consecutive tapemarKs.

Note that, to ensure a tape file created by a previous
program is available for use by a new program, you must have
knowledge of the tape being used and must use the APPEND forr
option when creating new files.

The formatting argument specifies information about tape
format. If a formatting argument is not supplied, the file is
assumed to contain a format header record determined by the ALS/N
1/O system. The following formatting argument is available:

a. NOHEAD - soecifies that the designated file has no header
record. This argument allows the reading and writing of
tapes used on computer systems using different header
formats. Note that files created with the NOHEAD option
cannot be opened by the Ada/M I/O subsystem.

F.ll.2 The FORM Specification for External Files -3

Version 3.5 Ada/M PSE HandDocK
29 March 1991

F.11.3 File Processing

Processing allowed on Ada/M files is influenced by the
characteristics of the underlying device. The following
restrictions apply:

a. Only one file may be open on an individual AN/USH-26 tape
car::idge at a time.

b. Only one input and one output file may simultaneously be open
on an AN/USQ-69 terminal at one time.

c. An Ada program is erroneous if it does not close or delete
all files it creates or opens.

d. The attempt to CREATE a file with the mode IN FILE is not
supported since there will be no data in the file to read.

F-36 F.11.3 File Processing

Ada/M PSE Handbook Version 3.529 Marcn 199"

F.11.4 Text Input/Output

TEXT 10 is invoked by your Ada program to perform sequentia:
access 170 operations on text files (i.e, files whose content Is
in human-readable form). TEXT 1O is not a generic pacKage and,
tnus, its subprograms may be invoked directly from your program,using objects with base type or parent type in the
language-defined type character. TEXT 0 also providez t-e
generic packages INTEGER 10, FLOAT lO, FIXED 10, and
ENUMERATION_10 f4r the reading and writing of numeric values and
enumeration values. The generic packages within TEXT 0 recua-e
an instantiation for a given element type before any of tneir
subprograms are invoked. The specification of this package is
given in Section 14.3.10 of the Ada Language Reference Manual.

The implementation-defined type COUNT that appears in Section
14.3.l0 of the Ada Language Reference Manual is defined as
foows:

type COUNT is range 0.. NTEGER'LAST;

The im.olementation-defined subtype FIELD that appears in Section
:4.3.:0 of the Ada Language Reference Manual is defined as
folows:

subtype FIELD is INTEGER range 0..INTEGER'LAST;

At the beginning of program execution, the STANDARD INPUT
file and the STANDARD OUTPUT file are open, and associated with
the files specified by you at export time. Additionally, if a
program terminates before an open file is closed (except for
STANDARD INPUT and STANDARD OUTPUT), the last line added to the
file may be lost; if the fire is on magnetic tape, the file
structure on the tape may be inconsistent.

A program is erroneous if concurrently executing tasks
attempt to perform overlapping GET and/or PUT operations on the
same terminal. The semantics of text layout as specified in the
Ada Language Reference Manual, Section 14.3.2, (especially the
concepts of current column number and current line) cannot be
guaranteed when GET operations are interweaved with PUT
operations. A program which relies on the semantics of text
layout under those circumstances is erroneous.

For TEXT 10 processing, the line length can be no longer than
532 characters. An attempt to set the line length through
SET LINELENGTH to a length greater than 532 will result in
USE-ERROR.

F.11.4 Text Input/Output

Version 3.5 Ada/M PSE Handbc:.
29 March 1991

F.11.5 Sequential Input/Output

SEQUENTIAL 10 is invoked by your Ada program to perform :/o
on the records of a file in sequential order. The SEQUENTIAL :0
package also requires a generic Instantiation for a given element
type before any of its subprograms may De invoked. Once the
package SEQUENTIAL 0 is made visible, it will perform any
service defined by the subprograms declared in its specificazicn.
The specification of this package is given in Section 14.2.3 of
the Ada Language Reference Manual.

The following restrictions are imposed on the use of the
package SEQUENTIAL_:O:

a. SEQUENTIAL_10 cannot be instantiated with an unconstrained
array type.

b. SEQUENTIAL 10 cannot be instantiated with a record type with
discriminants with no default values.

c. Ada/M does not raise DATAERROR on a read operation if the
data inout from the external file is not of the instantiating
type (see the Ada Language Reference Manual, Section 14.2.2).

F.11.6 Direct Input/Output

Calls to the subprograms of an instantiation of DIRECT 10
have one of three possible outcomes. The exception USE ERROR is
raised if an attempt is made to CREATE and/or OPEN a file since
direct access '/O operations are not supported in Ada/M. The
exception STATUS ERROR is raised on calls to subprograms other
than CREATE, OPEN, and IS OPEN. The function ISOPEN always
returns the value FALSE.

The implementation-defined type COUNT that appears in Section
14.2.5 of the Ada Language Reference Manual is defined as
follows:

type COUNT is range O..LONGINTEGER'LAST.

The following restrictions are imposed on the use of the
package DIRECT 10:

a. DIRECT 10 cannot be instantiated with an unconstrained array
type.

b. DIRECT _0 cannot be instantiated with a record type with
discriminants with no default values.

F-38 F.11.6 Direct Input/Output

Ada/M PSE Handbook Version 3.529 March 1991

F.11.7 Low Level Input/Output

LOW LEVEL 10 is invoked by your Ada program to initiate
physical operations on peripheral devices, and thus executes as
part of a program task. Requests made to LOW LEVELIO from your
program are passed through the RTEXEC GATEWAY to the channel
programs in CHANNEL TO. Any status check or result information
is the responsibili:y of the invoking subprogram and can beobtained from the subprogram RECEIVECONTROL within LOW LEVEL 0.

The package LOWLEVEL_10 allows your program to send :/O
commands to the i/O devices (using SENDCONTROL) and to receive
status information from the I/O devices (using RECEIVECONTROL).
A program is erroneous if it uses LOW LEVEL_10 to access a device
that is also accessed by high-level 170 packages such as
SEQUENTIAL_70 and TEXT_10. The following is excerpted from the
package LOWLEVEL_1O.

-- 10 CHANNEL RANGE is the type for the parameter DEVICE for
-- both SEND CONTROL and RECEIVE CONTROL. DEVICE identifies
-- which device to perform the operation for, and the channel
-- number is a convenient means for identifying a device.
SUBTYPE io channel_range IS integer RANGE 0..63;

-- Range of values allowed for channel number.

SUBTYPE buffer address IS system.physical address;
-- Type of variables used to specify
-- address of buffer for the I/O operation.

SUBTYPE commandword IS long_integer RANGE 0..65535;

-- Data structures used in communication with the AN/USH-26.

ush26_programs : CONSTANT := 3;
-- Number of channel programs in CHANNEL_ O for
-- AN/USH-26 devices.

SUBTYPE ush26_operation IS integer
RANGE O..lowlevel io.ush26_programs;
-- Indicates to CHANNEL-1O which channel program to use.

ush26 reset channel : CONSTANT ush26_operation 0;
ush26-read Eata : CONSTANT ush26_operation 1;
ush26 write data : CONSTANT ush26_operation 2;
ush26-control : CONSTANT ush26_operation 3;

F.11.7 Low Level Input/Output F-39

Version 3.5 Ada/M PSE HandbooK
29 March 1991

TYPE ush26 data IS RECORD
-- Data passed to SENDCONTROL for operations on
-- AN/USH-26 devices.

operation : lowlevelio.ush26_operation;
-- Kind of operation requested of LOW LEVEL :0:
-- read data, write data, control, or initialize.

command : low level io.command word;
-- Command to send to the device.

datalencth : integer range 0..integer'last;
-- Numoer of words of data in the buffer.

buffer addr : low level io.buFfer-address;
-- Physical address of data buffer.

END RECORD;

-- Data structures used in communication with the AN/USQ-69.

usq69_programs : CONSTANT := 4;
-- Number of channel programs in CHANNEL_10 for
-- AN/USQ-69 devices.

SUBTYPE usq69_operation IS integer
RANGE 0.. lcw level io.usq69_programs;
-- Indicates to CHANNEL_0 which channel program to use.

usq69 reset channel : CONSTANT usq69_operation := 0;
usq69 header : CONSTANT usq69_operation := 1;
usq69 read data : CONSTANT usq69_operation := 2;
usq69_write data : CONSTANT usq69_operation : 3;
usq69_eor : CONSTANT usq69_operation 4;

TYPE usq69_data IS RECORD
-- information needed to do I/O to a AN/USQ-69 device.

operation low level-io.usq69 operation;
-- Kind of operation requeste3 of LOW LEVEL 10:
-- read data, write data, control, or initialize.

command low level io.command word;
-- Command to send to the device.

data_ -ngth : integer range 0..integer'last;
-- Number of words of data in the buffer.

buffer addr : low level io.buffer address;
-- Physical address of data buffer.

END RECORD;

rd358_programs : CONSTANT := 3;
-- Number of channel programs in CHANNELIO for
-- RD-358 devices.

cUBTYPE rd358_operation IS integer
RANGE 0..low level io.rd358.programs;
-- Indicates to CHANNEL IO which channel program to use.

F-40 F.11.7 Low Level Input/Output

Ada/M PSE Handbook Version 2.529 Marcn 1991

rd358 reset channel : CONSTANT rd358_operation := 0;
rd358 read _ata : CONSTANT rd358_operation 1;
rd358 write data : CONSTANT rd358_operation 2;
rd358_control : CONSTANT rd358_operation 3;

TYPE rd358 data IS RECORD
-- information needed to do I/O to an RD-358 device.

operation : low level io.rd358_operation;
-- Kind of operation requested of LOW LEVEL :0:
-- read data, write data, control, or ini:iaizza::n.

command : low level io.command word;
-- Command to send to the device.

data_length : integer range 0..integer'last;
-- Number of words of data in the buffer.

buffer addr : low level io.buffer address;
-- Physical address of data buffer.

END RECORD;

-- Types used for intercomputer I/O operations.

ic_programs : CONSTANT := 10;
-- Number of channel programs in CHANNEL_10 for
-- AN/USH-26 devices.

SUBTYPE intercomputer_operation IS integer
RANGE 0..Iow level io.ic_programs;
-- :ndicates to CHANNELIO which channel program to use.

ic reset channel : CONSTANT intercomputer_operation : 0;
ic-read data : CONSTANT intercomputeroperation := 1;
ic-write data : CONSTANT intercomputeroperation := 2;
i.c control : CONSTANT intercomputer_operation := 3;

TYPE intercomputer data IS RECORD
-- Informatisn 5eeded to do I/O to an intercomputer
-- channel.

operation : low level io.intercomputeroperation;
-- Kind of operation-requested of LOW LEVEL 10:
-- read data, write data, control, or initialization.

command : low level io.command word;
-- Command to send to the other computer.

datalength : integer range O..integer'last;
-- Number of words of data in the buffer.

buffer addr : low level io.buffer address;
-- Physical address of data buffer.

END RECORD;

F.11.7 Low Level Input/Output F-4-

Version 3.5 Ada/M PSE HandboCK
29 March 1991

-- Data type identifiers for RECEIVECONTROL.

TYPE io status word IS NEW long_integer RANGE 0..65535;
-- Used to pass I/O status word to RECEIVE-CONTROL.

SUBTYPE externalinterrupt_word IS
system.externalinterrupt word;

-- SENDCONTROL is an overloaded Ada procedure which passes :.0
-- control information to a procedure in CHANNEL 10 in order to
-- carry out a read, write, or control operation. In Ada/M,
-- there are four overloaded subprograms for SEND CONTROL, one
-- for each of the following purposes

-- send data/command to an AN/USH-26 device,
-- send data/command to an AN/USQ-69 device,
-- send data/command to an RD-358 device,
-- send data/command to another computer.

-- The following versions of the overloaded procedure
-- SENDCONTROL are used for sending data to specific types of
-- devices. The difference between the various forms of this
-- procedure lies in the DATA parameter, which is a record with
-- a field that specifies the control command to send to the
-- device. The data type of this field is different for each
-- type of device.

-- SEND CONTROL for AN/USH-26 devices.
PROCEDURE SEND CONTROL (

device : IN low level io.io channel range;
-- Channel number of tHe peripheral device.

data : IN OUT low level io.ush26 data
-- I/O control information for AN/USH-26 devices.

-- SEND CONTROL for AN/USQ-69 devices.
PROCEDURE SEND CONTROL (

device : IN low level io.io channel range;
-- Channel-number of the peripheral device.

data : IN OUT low level io.usq69_data
-- i/O conErol iRformation for AN/USQ-69 devices.

-- SEND CONTROL for RD-358 devices.
PROCEDURE SEND CONTROL (

device : IN low level io.io channel range;
-- Channel number of the peripheral device.

data : IN OUT low level io.rd358 data
-- I/O control informatioF for AN/USQ-69 devices.

F-42 F.11.7 Low Level Input/Output

Ada/M PSE Handbook Version 3.5
29 March 1991

-- SEND CONTROL for Intercomputer channel.
PROCEDURE SEND CONTROL (

device : IN low level io.io channelrange;
-- Channel number of the peripheral device.

data : IN OUT lowlevel io.intercomputer data
-- I/O control information for AN7USQ-69 devices.

-- RECEIVECONTROL is a procedure which passes I/O control
-- informati.on to a procedure in CHANNEL 10 in order to obtain
-- the value for the input transfer counE for the specified
-- channel.

PROCEDURE RECEIVE CONTROL
device : IN low level io.io channel_range;

-- Device Type for which status is requested.
data : IN OUT low level io.io status word

-- External interrupt word for channel specified.

-- RECEIVECONTROL for getting the external interrupt data
-- for the specified channel.
PROCEDURE RECEIVE CONTROL (

device : IN lowlevelio.io channel_range;
-- Channel number of the peripheral device.

data : IN OUT low-level io.external interrupt word
-- Inp~it count for channel specified.

-- RECEIVE CONTROL for getting input transfer count.
PROCEDURE RECEIVE CONTROL (

device : IN low level io.io channel range;
-- Channel-number of the peripheral device.

data : IN OUT integer
-- Input count for channel specified.

F.12 System-Defined Exceptions

In addition to the exceptions defined in the Ada Language
Reference Manual, this implementation pre-defines the exceptions
shown in Table F-2 below.

F.12 System-Defined Exceptions F-43

Version 3.5 Ada/M PSE Handbook
29 March 1991

--

Name Significance
--

CAPACITY ERROR Raised by the Run-Time Executive when
Pre-Runtime specified resource limits
are exceeded.

SYSTEM-ERROR Serious error detected in underlying
AN/UYK-44 or AN/AYK-14 operating
system.

UNRESOLVEDREFERENCE Attempted call to a subprogram whose
body is not linked into the executable
program image.

ACCESS CHECK The ACCESS CHECK exception has been
raised explicitly within the program.

DISCRIMINANTCHECK DISCRIMINANT CHECK exception has been
raised explicitly within the program.

DIVISION CHECK The DIVISION CHECK exception has been
raised explicitly within the program.

ELABORATION CHECK The ELABORATION CHECK exception has
been raised explicitly within the
program.

INDEX CHECK The INDEX CHECK exception has been
raised explicitly within the program.

LENGTH CHECK The LENGTH CHECK exception has been
raised explicitly within the program.

OVERFLOWCHECK The OVERFLOW CHECK exception has been
raised explicitly within the program.

RANGECHECK The RANGECHECK exception has been
raised explicitly within the program.

Table F-2 - System Defined Exceptions

F-44 F.12 System-Defined Exceptions

Ada/M PSE Handbook Version 3.5
29 March '99,

F.13 Machine Code Insertions

The Ada language permits machine code insertions as def-ned
in Section 13.8 of the Ada Language Reference Manual. This
section describes the specific details for writing machine code
insertions as provided by the predefined package MACHINE CODE.

You may, if desired, include AN/UYK-44 or AN/AYK-14
instructions within an Ada program. This is done by includin= a
procedure in the program which contains only record aggregates
defining machine instructions. The package MACHINE CODE,
included in the system program library, contains type, record,
and constant declarations which are used to form the
instructions. Each field of the aggregate contains a field of
the resulting machine instruction. These fields are specified in
the order in which they appear in the actual instruction.

A procedure containing machine-code insertions looks simil.ar
to this:

with machine code; use machine code;
procedure machinesamples is
begin

instr'(OPCODE,A,M,Y); -- first instruction
instr'(OPCODE,A,M,Y); -- second instruction

instr'(OPCODE,A,M,Y); -- last instruction
end;

OPCODE, A, M, and Y in all these examples are replaced by the
actual opcode, A register, M register, and Y field desired for
each AN/UYK-44 or AN/AYK-14 instruction. Whenever possible,
MACRO/M mnemonics are used to specify the opcode field. The A
and M register fields are specified as RO, Rl, ... R15. The Y
field may be specified by any static expression which will fit in
a 16-bit integer. For certain instructions such as unary
arithmetic operations, the opcode and either the A or M register
determine which instruction is executed. The specification of
these instructions and certain others is somewhat more
complicated and is explained in detail below. Here are some
examples of possible MACRO/M instructions and the Ada/M record
aggregates that correspond to them:

MACRO/M Ada/M

spt A,Y,M instr'(spt,A,M,Y);
Ir A,M instr'(ir,A,M);
1 A,Y,M instr'(1,AM,Y);
mi A,M instr'(mi,A,M);
ork A,Y,M instr'(ork,A,M,Y);

F.13 Machine Code Insertions F-45

Version 3.5 Ada/M PSE HandbooK
29 March 1991

In some cases, A or M register fields do not appear in the
MACRO/M instruction because the field is always zero in the
machine instruction. RO must be used in that field of the record
aggregate in Ada/M, however, since no missing fields are allowed.
Here are some examples where that occurs:

MACRO/M Ada/M

lpi M instr'(lpi,rO,M);
lp YM instr'(lp,rO,M,Y);
sfsc M instr'(sfsc,rO,M);

Some MACRO/M mnemonics are ambiguous and are assembled into
one of two or more opcodes based on the operands specified in the
instruction. Ada/M opcode mnemonics must be unambiguous, so
either the letter K (indicating an RK format instruction) or the
letter X (indicating an RX format instruction) has been added to
the end of otherwise ambiguous mnemonics. Some examples of this
are as follows:

MACRO/M Ada/M

jz A,Y,M instr'(jzk,A,M,Y);
jp A,*Y,M instr'(jpx,A,M,Y);

For those MACRO/M mnemonics which determine both the opcode
and either the A or M register, the MACRO/M mnemonic
(disambiguated as above if necessary) is used for the A or M
field and an opcode mnemonic is invented. Some examples of this
are as follows:

MACRO/M Ada/M

pr A instr'(ua opcode,A,pr);
drtr A instr'(ua~opcode,A,drtr);
sqr A instr'(us-opcode,A,sqr);
jne Y,M instr'(cjkopcode,jnek,M,Y);
hcr instr'(ecopcode,hcr,rO);

F-46 F.13 Machine Code Insertions

Ada/M PSE Handbook Version 3.s
29 March 199i

You must be able to include data as well as instructions in
machine code. The MACHINE CODE package defines record types
which allow you to create indirect words, signed bytes, unsigned
bytes, words, double words, and floating point numbers. The
format for including data is as follows:

Data Ada/M

indirect word (iw J,Y,X) indirect word'(J,X,Y);
unsigned byte (0 .. 255) unsigned_bytevalue'(VALUE);
word (16-bit value) word value'(VALUE);
double word (32-bit value) double word value'(VALUE);
float value (32-bit value) floatvalue'(VALUE);

Table F-3 contains a list of MACRO/M instructions and their
Ada/M machine code equivalents, sorted by MACRO/M mnemonic.

F.13 Machine Code Insertions F-47

Version 3.5 Ada/M PSE HandbOOK
29 March 1991.

+ -

MACRO/M Ada/M

a A,Y,M irstr'(a,A,M,Y);
acos A i;nstr'(mf opcode,A,acos);
acr M instr'(lpar,rO,M);
ad A,Y,M instr'Cad,A,M1,Y);
adi A,M instr'(adi,A,M);
adr A,M -;nstr'(ad:,AM);
ai A,M instr'(ai,A,M);
ak A,Y,M instr'(ak,A,M,Y);
aid A,Y,M instr'(ald,A,M,Y);
aldr A,M ;nstr'(aidr,A,M);
alog A instr'(mf-opcode,A,alog);
als A,Y,M instr'(als,A,M,Y);
alsr A,M irstr'(alsr,A,M);
and A,Y,M instr'(and,A,M,Y);
andi A,M instr'(andi,A,M);
andk A,Y,M ins~lr'(andk,A,M,Y);
andr A,M instr'(andr,A,M);
ar A,M instr'(ar,A,M);
ard A,Y,M instr'(ard,A,M,Y);
ardr A,M instr'(ardr,A,M);
ars A,Y.,M instr'(ars,A,M,Y);
arsr A,M instr'(arsr,A,M);
asin A instr'(mf_opcode,A,asin);
atan A instr'(mf-opcode,A,atan);
ba A,Y,M instr'(ba,A,M,Y);
bc A,Y,M instr'(bc,A,M,Y);
bci AM instr'(bci,A,M);
bcx A,Y,M instr'(bcx,A,MY);
bcxi A,M instr'(bcxi,AM);
bf Y,M instr'(bf,rO,M,Y);
bfi M instr'(bfi,rO,M);
bi A,Y,M instr'(bl,A,M,Y);
bli A,M instr'(bli,A,M);
bix A,Y,M instr'(blx,A,M,Y);
bixi A,M instr'(b.xi,A,M);
bs AY,M instr'(bs,A,M,Y);
bsi A,M instrm (bsi,A,M);
bsu AY,M instr'(bsu,A,M,Y);
bsx A,Y,M instr'(bsx,A,MY);
bsxi A,M instr'(bsxi,A,M);
built-in test - dec instrl(bit_opcode,dec);
built-in test - eec instr'(bit-opcode,eec);

Table F-3a -Machine Code Instructions

F- 48 F.13 Machine Code Insertions

Ada/M PSE Handbook Versi.on 3.5
29 March 1991

4-----.--------------- .-----

I M1ACRO/M Ada/M
--- 4

built-in test - icp instr'(bit_opcode,icp.);
built-in test - ids instr (bit opcode,ids);
b-uilt-in test - i;MP instr'(bit-olcode,imp);
built-in test - Irm instr'(bit_opcode,lrn);
built-in~ test - rscs instr'(bi;t_opcode,rscs);
built-in test - sel instr-'(bit-opcode.sel);
built-in test - srm instr'(bit_opcode,srm);
c A,Y,M instr'(c,A,M,Y);
cbr A,M -;nstr'(cbr,A,M);
ccr AM instr'(l'.ar,A,M);
cd A,Y,M inscr'(cd,A,M,Y);
cdi A,M instr'(cdi,A,M);
cdr A,M instr',cdr,A,M);
ci A,M instr'(ci,A,M);
ck A,Y,M instr'(ck.A,M,Y);
cl A,Y,M instr'(cl,A,M,Y);
cld A,Y,M instr'(cld,A,M,Y);
cldr A,M instr'(cldr,A,M);
cli A,M instr'(cli,A,M);
clk A,Y,M inst"r'(clk,A,M,Y);
dlr A,M instr'(clr,A,M);
cls A,Y,M instr'(cls,A,M,Y);
clsr A,M instr'(clsr,.I,M);
cm A,YM instr'(cm,A,M,Y);
cmi A,M instr'(mi,A,M);
cmk k,Y,M ins,. (cmk,A,M,Y);,
cmr A,M instr'(cmr,A,M);
cnt A instr'(us opcode,A,cnt);
cos A instr'(mf-opcode,A,cos);
cr A,M instr'(crA,M);
d A,Y,M instr'(d,A,M,Y);
data - double word double word value'(VALJE);
data - float float value'(VALJE);
data - signed byte signeca byte value'(VALUE);
datd - unsigned byte unsicynedbyte value'(VALJE);
data - word word value'(VAkLUE);
dcir instr'(uc opcode,rO,dcir);
dcr instr'(uc opccde,rO,dcr);
dd A,YPM -nstr'(ddA,MY);
ddi A,M iicstr'(ddi,A,M);
ddr A,M ir23tr'(ddr,A,M);
di A,M instr'(di,A,M);
dk A,Y,M instr'(dk,A,M,Y);

1---

Table F-3b - Machine Code Inszructions (Continued)

F.13 Machine Code Insertions F-49

Version 3.5 Ada/M PSE EHandbOCK
29 March 1.991

--

I MACRO/M Ada/M
--- --------------------------

dmn instr'(uc opcode,rO,dm);
dr A,M instr'(dr,A,M);
dror A instr'(ua opcode,A,dror);
drtr A instr'(ua opcode,A,drt.r);
ecir instr'(uc opcode,rO,ecir.);
ecr instr'(uc opcode,rO,ecr);
er A instr'(uc opcode,A,er);
exp A instr'(mf opcode,A,exp);
fa A,Y,M instr'(faA,M,Y);
ffai A,M instr'(fai,A,M);
far A,M instr'(far,A,M);
.6c A,Y instr'(mp opcode,A,fc);

wora value' (Y);
fd A,Y,M instr'(fd,K,M,Y);
fdi A,M instr'(fdi,A,M);
f'dr A,M instr' (fdr,A,M);
.fic A instr'(mp_opcode,A,flc);
flcd A instr'(mpopcode,A,flcd);
fmn A,Y,M irstr'(fm,A,M,Y);
ffmi A,M irstr'(fmi,A,M);
frnr A,M instr'(fmr,A,M);
fsu A,Y,M instr'(fsu,A,M,Y);
fsui A,M instr'(fsui,A,M);
fcsur A,M instr'(fsur,A,M);
fxc A instr'(mp_opcode,A,fxc);
fxcd A irstr'(mp_opcode,A,fxcd);
ib A instr'(us opcode,A,ib);
ick A,Y instr'(e6 opcode,A,ick,Y);
ioc A,Y,M instr'(iocr,A,M);

word-value'(Y);
.Aocr instr' (iocr, rO ,rO);
iror A instr'(ua opcode,A,iror);
irtr A instr'(ua opcode,A,irtr);
is A instr'(us opcode,A~is);
iw Y,Y,X indirect word'(J,X,Y);
j *'j,f instr'(cj)Yx -opcode,jx,M);
j Y,M instr'(cjkopcode,jk,M);
jb *YM instr'(cjxopcode,jbx,M);
jb Y,M instr'(cjkopcode,jbk,M);
jbr M instr'(cjropcode,jbr,M);
jc *Y,M instr'(cjxopcode,jcx,M);
jC Y,M instr'(cjkopcode,jck,M);
icr M instr'(cjropcode,jcr,M);
je *Y,M instr'(cjxopcodejex,M);
je Y,M inst:'(cjk opcode,jek,M);

- -

Table F-3c - Machine Code Instructions (Continued)

F-50O F.13 Machine Code Insertions

Ada/M PSE Handbook Version 3.5
29 March ,.99l

--

I MACRO/M Ada/MI
4---

jer M instr'(cir opcode,jer,M);
jge *Y,M instr'(cjx_opcode,jgex,m);
jge Y,M instre(c k opcode,jgek,M);
jger M instr'(cjropcode,jger,M):
jks 1,*Y,M instr'(cjx_opcode,jksxl;,M);
jks i,Y,M instr'(cjk_opcode,jkski,M);
jks 2,*Y,M instr'(cjx_opcode,jksx2,M);
jks 2,.Y,M instr (cjk_opcode,jksk2,M);
jksr 1,M instr'(cjr_opcode,jksrl,M);
jksr 2,M irstr 6(cjr_opcode,jksr2,M);
im *Y,M instr'(jlmx,rO,M,Y);
jim Y,M instr'(jlmk,rO,M,Y);
jir A,*Y,M instr'(jlrx,A,M,Y);
j2.r A,Y,M instri(jlrk,A,M,Y);
jirr A,M instr'(jlrr,A,M);
jis *y,M instr'(cjx_opcode,jlsx,M);
jis Y,M instr'(cjk_opcode,jlsk,M);
jisr M instr'(cjr_opcode,jlsr,M);
4n A,*Y,M instr'(jnx,A,P4,Y);
]n A,Y,M instr'(jnk,A,M,Y);
jne *Y,M instr'(cjx_opcode,jnexM).
jne Y,M instr'(cjk_opcode,jnekM);
jner M irstr'(cjr_opcode,jner ,M);
jnr A,M instr'(jnr,A,M);
jnz A,*Y,M instr'(jnzx,A,M,Y);
jnz A,Y,M instr'(jnzk,A,M,Y);
jnzr A,M instr'(jnzr,A,M);
jo *Y,M instr'(cjx_opcode..jox,M);
jo Y,M instr'(cjk opcode,jok,M);
jor M instr'(cjr opcode,jor,M);
jp A,*Y,M instr'(jpx,A,M,Y);
jp A,Y,M instr'(jpk,A,M,Y);
jpr A,M instr'(jpr,A,M);
jpt *Y,M instr'(cjx-opcode,jptx,M);
jpt Ym instr'(cjk_opcode,jptk,M);
jptr M instr'(cjr_opcode,jptr,M);
jr M instr'(cjr_opcode,jr,M);
is *Y,M instr'(cjx_opcode,jsx,M);
is Ym instr'(cjk_opcode,jsk,M);
jsr M instr'(cjropcode,jsr,M);
jz A,*Y,M instr'(jzx,A,M,Y);
jz A,Y,M instr'(jzk,A,M,Y);
jzr A,M instri(jzr,A,M);

+---

Table F-3d - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F5

Version 3.5 Ada/M PSE Handbook
29 March 1991

--

I MACRO/M Ada/M

1 A,Y,M instr.'(l,A,M,Y);
la A,M instr'(1a,A,M);
lad A,M instr'(lad,A,M);
laid A,M instr'(lald,A,M);
lals A,M instr'(lals,A,M);
lard A,M instr'(lard,A,M);
lari A,M instr'(lari,A,M);
larm A,Y,M instr'(larm,A,M,Y);
larr A,M iflstr'(larr,A,M);
lars A,M instr'(lars,A,M);
lbxi A,Y,M instr'(lbxi,A,M,Y);
lc A,M iristr S(fic,A,M);
lcep A instr'Cusopcode,A,lcep);
lclc A,M instr'(lJc,A,M);
lcld A,M instr'(lclc,A,M);
1cr A irstr'(ucopcode,A,lcr);
lcrd A instr' (ucopcode,A,lcrd);
ld A,Y,M instr'(1d,A,Y,M);
ldi A,M instr'(ldi,A,M);
ldiv A,M instr'(ldiv,A,M);
ldx A,Y,M instr'(ldx,A,M,Y);
ldxi A,M instr'(ldxi,A,M);
lem A instr'(uc_opcode,A,lem);
li A,M instr-'(1i,A,M);
lir A,M instr'(lir,A,M);
lj D instrl(lj,D);
lje D instr'(lje,D);
ljge D instr'(ljge,D);
Iji D instr'(lji,D);
ljlm D instrl(ljlm,D);
ljis D instr'(ljls,D);
ljne D instr'(ljne,D);
1k A,Y,M instr'(lk,A,M,Y);
11 A,M instr'(11,A,M);
llrd A,M instr'(llrd,A,M);
lirs A,M instr'(llrs,A,M);
lm A,Y,M instr'(1m,A,M,Y);
imap A,Y,M instr'(lmap,A,M,Y);
lur APY,M instr'(lmr,A,M,Y);
lmul A,M instr'(lmul,A,M);
ip YM instr'(1p,rO,M,Y);
ipa A,Y,M instr'(lpa,AM,Y);
lpai A,M instr'(lpai,A,M);

+---

Table F-3e - Machine Code Instructions (Continued)

F- 52 F.13 Machine Code Inserl-ions

Ada/M PSE Handbook Version 3.5
29 Marchi 1991

+---

I MACRO/M Ada/M

lpak A,Y,M iflstr'(lpak,A,M,Y);
ipar A,M instr'(loar,A,M);
ipi M instr'(lpi,rQ,M);
lpl A,Y,M irstr'(lpl,A,M,Y);
ipli A,M irstr'(lpli,A,M);
lpr A instr'(uc opcode,A,4'r);
Ir A,M instr-'(lr,A,M);
ird A,Y,M instr'(lrd,A,M,Y);
lrdr A,M iristr' (lrdr,A,M);
lrs A,YM instrl(lrs,A,M,Y);
lrsr A,M instr'(lrsr,A,M);
isor A instr'(uc_opcode,A,1sor);
lstr A instr'(uc opcode,A,lstr);
lsu A,M instr6 (lsU,A,M);
isud A,M instr'(lsud,A,M);
lx A,Y,M instr'(lx,A,M,Y);
1xi A,M instr'(lxi,A,M);
m A,Y,M instr'(m,A,M,Y);
mb A,M instr'(mb,A,M);
mdi A,M instr'(mdi,A,M);
mdm A,Y,M irstr'(mdm,A,M,Y);
mdr A,M instr'(mdr,A,M);
mi A,M instr'(mi,A,M);
mfk A,Y,M instr'(mk,A,M,Y);
mr A,M instr'(mr,A,M);
ms A,Y,M instr'(ms,A,M,Y);
msi A,M instr'(msi,A,M);
msk A,Y,M instr'(msk,A,M,Y);
msr A,M instr'(msr,A,M);
nf A instrl(mp opcode,A,nf);
nr A instrl(ua opcode,A,nr);
ock A,Y instr'(e6_opcode,A,ock,Y);
ocr A instr:(ua -opcodeA,ocr);
or AIY,M instr (orA,M,Y);
oni A,M instr'(ori,A,M);
ork A,Y,M instr'(ork,A,M,Y);
orr A,M instr'(orr,A,M);
pr A instrl(ua_opcode,A,pr);
qal A,Y instr'(mp opcode,A,qal);

worFd value'(Y);
qar A,Y jrnstr'(mp-opcode,A,qar);

word value'(Y);
qqt A.Y,M instr'(qgt,A,M,Y);
qpb A,Y,M instri(qpb,A,4,Y);

+---

Table F-3f - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F5

Version 3.5 AaMPEHnbo
29 March 1991 AaMPEHnbo

+---

I MACRO/M Ada/MI
4---

qpt A,Y,M instr'(qpt,A,M,Y);
rex Y,M instr'(rex,rO,M,Y);
rf A instr'(mp opcode,A,rf);
rfp A instr'(mpopcode,A,rfp);
rhi A instr'(mpopcode,A,rh);
rhp A instr'(mpopcode,A,rhp);
rim AY,M iflstr'(smap,A,M,Y);
rr A instr"(ua opcode,A,rr);
rvr A instr'(usopcode,A,rvr);
s AFY,M instr'(s,A,M,Y);
sari A,M instr'(sari,A,M);
sarm A,Y,M instr'(sarm,A,M,Y);
sarr A,M instr'(sarr,A,M);
sbr A,M instr'(sbr,A,M);
sbxi A,Y,M iflstr'(sbxi,A,M,Y);
scr A instr'(uc -opcode,A,scr);
scrd A instr'(uc-opcode,A,scrd);
sd A,Y,M instr'(sd,A,M,Y);
sdi A,M instr'(sdi,A,M);
sdx A,Y,M instr'(sdx,A,M,Y);
sdxi A,M instr'(sdxi,A,M);
sedr A,M instr'(sedr,A,M);
ser A,M instr'(ser,A,M);
sfr A instr'(us opcode,A~sfr);
sgt A,Y,M instr'(sgt,A,M,Y);
Si A,M instr'(si,A,M);
sin A instr'(mf-opcode,A,sin);
sir A,M instr'(sir,A,M);
Sm A,I,M instr'(sm,A,M,Y);
smap A,Y,M instr(smap,A,M,Y);
smc A instr'(us opcode,A,smc);
smr A,Y,M instr'(smF,A,M,Y);
spi A,Y,M instr'(spl,A,14,Y);
spli A,M instr'(spli,A,M);
spt A,Y,M instr'(spt,A,M,Y);
sqr A instra (us opcode,A,sqr);
sqrt A instrl(us-orcode,A,sqrt);
ssor A instr'(ucopcodepA,ssor);
satr A instr'(uc-opcode,A,sstr);
su A,Y,M instr'(suA,M,Y);
sud A,Y,M instr'(sud,A,M,Y);
sudi A,M instr'(sudi,A,M);
sudr A.M instr'(sudr,A,M);

+--

Table F-3g - Machine Codc instructions (Continued)

F- 54 F.13 Machine Code Insertions

Ada/K PSE Handbook Version 3.5
29 March 1992.

.---

I 1ACRO/M Ada/M
.---

sui A,M instr'(sui.A,M);
suk A,Y,M ifstr'(suk.,A,M,Y);
stir A,M instr'(sur,A,M);
sx A,Y,M instr'(sx,A,M,Y);
sxi A,M instr'(sxi,A,M);
sz Y,M instr'(sz,rO,M,Y);
szi M instr'(szi,rO,M);
tan A instr'(m~f_opcode,A,tan);
tcdr A irstr'(ua_opcode,A,tcdr);
tcr A instr'(ua_opcode,A,tcr);
vf A instr'(mp_opcode,A,vf);
vfp A instr:(mpopcode,A,vfp);
vh A instr (mp_opcode,A,vh);
vhp A instr'(mp_opcode,A,vhp);
wcm A,Y,M instr'(lmap,A,M,Y);
wimk AMY instr'(e6_opcode,A,M,Y);

wim ,YMinstr'(lmap,A,M,Y);
wimk A,Y,M instr'(e6_opcode,A,M,Y);
xj A,*Y,M instr'(xjx,A,M,Y);
xj A,Y,M instr'(xjk,A,M,Y);
xjr A,M instr'(xjr,A,M);
xor A,Y,M instr'(xor,A,M,Y);
xori A,M instr'(xori,A,M);
xork A,Y,M instr'(xork,A,M,Y);
xorr A,M instr'(xorr,A,M);
xsdi A,M instr'(xsdi,A,M);
xsi A,M instr'(xsi,A,M);
zbr A,M instr'(zbr,A,M);

-- +

Table F-3h Machine Code Instructions (Continued)

F.13 Machine Code Insertions F-55

